Open Science Index, Computer and Information Engineering Vol:3, No:7, 2009 publications.waset.org/4526/pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering
Vol:3, No:7, 2009

A Parallel Implementation of the Reverse
Converter for the Moduli Set {2”, 2"-1, 2" '—1}

Mehdi Hosseinzadeh, Amir Sabbagh Molahosseini, and Keivan Navi

Abstract— In this paper, a new reverse converter for the moduli
set {27, 2"-1, 2"'-1} is presented. We improved a previously
introduced conversion algorithm for deriving an efficient hardware
design for reverse converter. Hardware architecture of the proposed
converter is based on carry-save adders and regular binary adders,
without the requirement for modular adders. The presented design is
faster than the latest introduced reverse converter for moduli set {2,
2"-1, 2"'-1}. Also, it has better performance than the reverse
converters for the recently introduced moduli set {21, 2", 2"-1}

Keywordss— Residue arithmetic; Residue number system;
Residue-to-Binary converter; Reverse converter.

1. INTRODUCTION

HE basis for each residue number system (RNS) is a

moduli set which consists of a set of pairwise relatively
prime numbers [1]. Until now, many moduli sets with different
dynamic ranges have been introduced for RNS [2]-[8]. Among
these, the moduli set {2"-1, 2", 2"+1} is the most well-known.
This moduli set can result in simple and efficient designs for
reverse converters, but the performance of arithmetic unit of
RNS systems based on this moduli set are restricted to the
time-performance of the modulo 2"+1. The modulo 2"+1
operations are very complex, and are usually the bottleneck for
RNS arithmetic units [9]. Hence, the moduli sets {2", 2"-1, 2"
1} [5],[6] and {2""'~1, 2", 2"-1} [7] have been suggested as
alternatives for the moduli set {2"-1, 2", 2"+1}. In these
moduli sets, the moduli 2"'—1 and 2""'-1 are used instead of
2"+1. The arithmetic units of RNS systems based on moduli
sets {2”, 2"-1, 2"'-1} and {2""'-1, 2", 2"-1} are faster than
those based on the moduli set {2"-1, 2", 2"+1}, but due to the
mathematical properties of these moduli sets, they have more
complex reverse conversion than the moduli set {2"-1, 2",
2"+1}.

In this paper, we apply some simplifications to the reverse
conversion algorithm of [6], and present a new hardware
implementation of the reverse converter for the moduli set {2",
2"-1, 2"'-1}. The proposed reverse converter has lower
conversion delay than the reverse converters of [5] and [6].
Also, it has better performance in comparison to the recently
proposed reverse converters for the set {271, 2", 2"-1} [7].

In the rest of paper, the conversion algorithm of [6] is
introduced in section II. In section III we propose the
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improvements on conversion algorithm of [6]. Also, hardware
implementation of the improved conversion algorithm is
presented in section IV. Section V evaluates the performance
of the proposed reverse converter as well as the other reverse
converters, with regard to the conversion delay and hardware
complexity, and section VI is conclusion.

II. WANG'S CONVERSION ALGORITHM

Wang et al. [6] used New CRT-I [10],[11] to derive a high-
speed reverse conversion algorithm as follow:

Theorem 1 [6]: In the RNS system based on the moduli set
{2", 2"1, 2”1}, the residue represented number (x|, X, x3)
can be converted into its equivalent weighted binary number
by

X =x,+2"Z @9
where
Z=Q2" -1V +[x,—x |, )
L+ T+ L+ T+ T x>
Y= . 3)
|T1+T2+T3+T4+Tszn471 Xy <X
T, =X30X3,0 " X3 4
[ ———
n—1 bits
T, =X 10X a2 X (5)
[ —
n—1 bits
Ty=x,,,00---0 (6)
n-2 bits
T,=x,,, 'x_z,o 7
n—1 bits
T,=11-1x, ®)
n-2 bits '
fs = &;._14'{2,;171)6 2,n-1 )

n-=3 bits

The proof of this theorem is described in [6].

III. IMPROVED CONVERSION ALGORITHM
In this section, we make some simplifications to the Wang et
al. [6] conversion algorithm, for achieving a more efficient
hardware implementation. First, Theorem 1 can be rewritten as
X =x,+2"Z (10)

where
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Z=(Q2" =1 +|x, x|, =2"Y =Y +]x,—-x |, (1)
L+ L+ L+ T+, x2x
= . (12)
|T1 +T, +T, +T, +T5|2,H_1 X, <X
Equation (11) can be parsed as below:
Z=2"A4+B (13)
B = +|x,-x,|, (14)
A=Y+B, (15)

It should be noted that B,,, is the borrow which is produced by
the subtraction of (14). Also, the operands needed for
calculating Y, are given in (4)-(9).

First, the relationship between (8) and (9) is remarkable, and

based on it, we can write the following equation
T, =T, +1 (16)

Therefore, we can add up binary vectors of equations (4)-(7)
and (9), and then when x,>x,, the result should be incremented
by one. So,

(P, P) = [T, 4T, 4T, 4T, 4T,
2n7|

an

The expression (P,,P;) denotes two (n—1)-bit wide result of
end around carry save addition of equations (4)-(7) and (9).

-1

Next, we simplify (14) and (15). The following algorithm
can be used for calculating the correct value of Y in (14) and

(15).

If (o, <x)) then Y =|P, + 7|

21
If (P1+P, < 2"'—1) then Y=P,+P,
If (P,+P, > 2""'—1) then Y=P,+P,—(2"'-1)
Else if (x, > x)) then Y =|P, + P, +1|,

-
If (P;+Py+1 < 2" '1) then Y=P,+P,+1
If (Py+Py+1 > 2""'~1) then Y=P,+P,+1-(2"'-1)
End if

Fig. 1 The algorithm for selection of correct value of ¥

Based on this algorithm, ¥ can be calculated by

B +P x,<x and B+P, < 2" -1

PI+PZ_(2"’1_1) X, < x and B+ P, > o=l

Y= R+Ph+1 x,>x and B+ P, < 2" -1

B+ P +1—(2n—1_1)’x22 x, and B+ P, 2 ol _q
(18)

Now, from (14) we have
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B=|x,—-x,|, -Y (19)
where
X —x+2"-1) x,<x
|x2 —x1| . 278 2 <X (20)
2 Xy — X Xy 2 X

Therefore, by substituting the values of (18) and (20) in (19),
we have

4 x;<x and B+P < 2" -1
5 v, x,< x and B+ P, > 2" - an
v, x,2x and B+ P, < 2" -
Vs x> x and B+ P > 2" 1
where
Vi,=x,-x,+2"-1)-P -P, (22)
Vy=x,-x,+(2"-)-P,-P,+(2""' -1 (23)
V,=x,-x,-P-P, -1 (24)
Vy=x,-x,-P—-P,—1+(2"" -1) (25)
The equation (22) can be rewritten as follows
Vi=x,+(@Q2" -1-x)-Q2" -1+ -1-P) 6
- )@ -1-R) -2 -+ 27D
So, the above equation becomes:
Vi=x,+(Q2"-1-x)+Q2"'=1-P) o7
+(2""'=-1-P) +2-2"
with  considering the facts that (2" -1-x,)=x,,
(2"'-1-P)=P and (2"'-1-P,)=P, ,we have
V, =x,+X,+P +P, +2-2" (28)
Using similar derivation, (23)-(25) can be calculated as
V,=x,+x,+P+P, +1-2"" (29)
Vi=x,+x,+P +P, +2-2"" (30)
V,=X,+% +P +P, +1-2""-2" @31)
The equations (28)-(31) can be rewritten as
V,=(QP+P;+1)+1) -2" (32)
V,=QP,+P,+1) -2"" (33)
V,=(QP,+P,+1)+1) —2"" (34)
V,=QP,+P+1) =2""-2" (35)
where
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(Ps,P;)=x,+2P,+P, (36)

(P,,P)=%,+P,+P, (37)

The terms (Pg,Ps) and (P,4,P3) denote the result of carry save
addition. Also, since P4 and Pg are the carry vector results of
the carry save additions, they should be shifted by one bit to
the left for performing regular addition.

Finally, (15) can be simplified as below

A=Y+B, (38)
The value of Y from (18) can be substituted in (38) as
A=FR+P +a+B,, 39)
where
0 x,<x and B+P < 2" 1
1 x,< x and B+ P, > 2" 1
a= (40)
1 x,2x and B+ P, < 2" —1
2 x;> x and B+ P > 2" 1

It should be noted that, —2"" in (18) only changes the most
significant bits of ¥, and since the most significant bit of Y for
calculation of (38) will be ignored, we don't take into account
the —2"" in computing the value of a.

IV. HARDWARE IMPLEMENTATION

Hardware architecture of the proposed reverse converter for
the moduli set {2”, 2”1, 2" '-1} is based on equations (10)
and (13)-(15). Firstly, as shown in Fig.2, by using three (n—1)-
bit carry save adders (CSAs) with end around carry (EAC), the
modulo carry save addition of (17) is performed. Since, (n—2)
bits of (6) are 0's, and (rn-3) bits of (9) are 1's, (n—2) and (n-3)
of the full adders (FAs) in CSA1 and CSA3 are reduced to (n—
2) half adders (HAs) and (n—3) XNOR/OR gates, respectively.

n—li}’ rlfléw2 }’t—l&T1

7. |(n=1)—bit CSAl with EAC]

n—l&4 n—1¢ n—l¢
(n = 1) = bit CSA2 with EAC| T4
n—1¢ n—l¢ n—l&

|(n —1) — bit CS43 with EAC|

n-—1 n-—1
g

Fig. 2 Realization of (17)

Fig.3 shows the implementation of (21). First, two CSAs is
used for realization of (36) and (37). Then, (32)-(35) are
implemented by using two (n+1)-bit carry propagate adders
(CPAs) followed by a constant subtractor unit (CSU).
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§f
x| n-bitCS44 |
TR T
| (n+D)-bit CS45 ]
" 1¢P6 i 1¢P5
[(n +2)—bir CPAl«l
n+ 24

]
((n +3) - bit CPA 2«1

R 28 v
Constant Subtractor Um’t|

n+1¢n+1¢n+l n+1
Vs v5 vh v

0x0 0lx 1x000=,€C
MUX QOutl
li ’i Cour
C
Out3
BOut B :

Fig. 3 Calculation of B

It should be noted that the carry-in of these CPAs are 1, and
so, CPA2 includes only (n+2) HAs. Hence, CPA1 and CPA2
function in a bit level parallel architecture. Therefore, the total
delay of CPA1 plus CPA2 is (n+2)tpattya, where fp5 and fa
denote the delay of an FA and HA, respectively. Fig. 4 depicts
the CPA1 and CPA2 for constant value of three bits. So, It is
clear that, the complexity and the delay are 3(FA4 + HA) + HA

and 3¢, +1¢,,, respectively.

v %
3—bit CPAl |«C,
7
4—bit CPA2 Jec'*

R v
S’ S :
Fig. 4 Implementation of CPA1 and CPA2 for a constant value

The CSU consists of four small subtractors. The first
subtractor subtract 2" from v, in (32), and since this
subtraction only change the most significant two bits of vy, it
can be simply implemented with two FAs. Similarly, the other
subtractors, subtract 2"!, 2! and 2"'+2" from v,, v; and vy,
respectively. The most significant bit of the result of
subtraction will be ignored, and also one of the borrow-out of
these four subtractors will be used in the calculation of (38).
Totally, we need 9 FAs for CSU, and the total delay of this
unit is the delay of three FAs. For example, the subtract part
for computing v, is shown in Fig.5. So, the CSU produces v,
vy, v3 and vy in (32)-(35). One of these four numbers must be
chosen for achieving the correct result of B in (21). The
correct output between these four numbers will be selected by
an n-bit MUX. The detector unit produces the select lines of
this MUX. This detector unit (DU) includes two CPAs as
shown in Fig. 6.
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1P 9P, -1 P P.

¢ g gud
| FA |¢| Fa |& F4 |-

1 1 1

Vf,nﬂ Vin V4¢,n71 Vapn-2---0

Fig. 5 The subtractor unit for computing vy

First, for detecting x,>x;, an n-bit CPA with one carry-in is
used. We need only the carry-out of this CPA. Similarly, for
finding P;+P,>2""'-1, an (n-1)-bit CPA is used. Next,
detecting of Py+P,+1>2""-1 can be simply implemented
based on this CPA, and by using » AND gates plus an OR
gate. Because, whenever, C,,,, is 1, consequently C,,; is also
1. But where C,,,; is 0, if all bits of sum vector of CPAS are
1's, therefore C,,,; become 1, otherwise C,,,; is 0. it should be
noted that, AND gates work parallel with CPAS. Hence, the
total delay of detector unit is delay of an n-bit CPA. Because,
Cour and C,,,; are calculated independently. Also, when C,,.,
is produce, after the delay of an OR gate, C,,; will be
obtained.

X, x1
x,2x, <1
2 C, &1 n—bit CPAT 1
x,<x,<0] ™ B -
2 1

P+P22"-1<1
P +P,<2" —1<:0} o
P+P+122"-1<1
P +P,+1<2" —1<:O} ous
Fig. 6 The detector unit

Table I presents different cases of the outputs of detector
unit, and the correct result that should be select.

TABLE L CORRECT SELECTION THE VALUE OF B
COml COW2 Cou,3 Correct output | & =
0 0 0 Vi 0=00
0 0 1 7, 1=01
0 1 0 V, 1=01
0 1 1 V, 1=01
1 0 0 Vs 1=01
1 0 1 Vy 2=11
1 1 0 Vs 2=11
1 1 1 Vy 2=11

Now, we investigate the implementation of 4 in (39). First,
as shown in Table I, the value of a can be computed by
aO = Cautl + C +Cuut3 (41)

al = Coutl (Cmn‘ 2 + Cout3 ) (42)

Therefore, o can be simply prepared by using some logic

gates. Next, with considering the facts that B,,—1,0 and

0=0,1,2, and substituting in (39), we have
A=P +P,+(-1,0,1,2)

out 2

(43)
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Hence, we do these four additions by using four CPAs, and
then the correct result will be selected by a multiplexer. Fig. 7
shows the hardware architecture for calculation of A. The
CPAs of Fig.7 work in a bit level parallel fashion like those in
Fig.4. Hence, the total delay of Fig.7 is (n—1)tpat2tqattmux-

2 A
n—1 n-1

(n—1)—bit CPA

n-1
(= 1)~ bit CPAT1 (n— 1) = bit CPA4<~1
Y A 4 Y

n —bit CPA6 1

2 1

Fig. 7 Calculation of 4

Finally, since x; and B are n-bit numbers, equation (10) can
be implemented by concatenating x;, B and 4 in (13) and (10),
without using any computational hardware. Table II presents
the characteristics of each part of the proposed reverse
converter in terms of FA and HA. It should be noted that, we
used the same assumptions used in [6], such as ignoring the
cost and the delay of required NOT gates, considering the
complexity of XNOR/OR gate and MUX as HA and FA,
respectively.

TABLEIl. HARDWARE REQUIREMENTS OF THE PROPOSED CONVERTER
Components | Full Adder | Half Adder
CSAl 1 n-2

CSA2 n—1 0
CSA3 2 n-3
CSA4 n 0
CSA5 n+1 0
CPA1 n+2 0
CPA2 0 n+3
CSU 9 0
DU 2n—1 0
CPA3 n—1 0
CPA4,5 0 2(n-1)
CPA6 0 n
MUX 2n 0
Total In+12 6n—4

V. PERFORMANCE EVALUATION

The critical delay path of the proposed reverse converter
composed of the delay of CSA1 to CSAS, CPA1, CPA2, CSU
and MUX. The delay of a CSA is the same as that of an FA.
Also, CPA2 adds the result of CPA1 with one. So, CPA2 can
work in a bit level parallel fashion with CPA1, and therefore it
adds only the delay of an HA to the total delay. The hardware
architecture of the presented reverse converter consists of
(9n+12) FA's, (6n—4) HA’s and (n—1) two-input AND gates.
Similar to [6], for the proposed converter as well as for the
converters of [7], we consider the complexity of an FA is twice

1SN1:0000000091950263
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that of an HA and the two-input AND gate. Hence, the total
hardware complexity of the proposed reverse converter can be
calculated as

2%(9n+12) HA + (9n+12)AND + (6n—4)HA + (n—1)AND

=(24n+20)HA + (10n+11)AND

There exist two other reverse converters for the moduli set
{2", 2"-1, 2”1} which have been introduced in [5] and [6].
The hardware architecture of the reverse converter of [6] is
based on Theorem 1, and composed of four (n—1)-bit CSAs
with EAC for performing modulo (2"'~1) carry save addition,
two (n—1)-bit modulo (2"'-1) adder that work in parallel, a
(n-1)-bit modulo (2"'-1) subtractor, a (2n—1)-bit regular
binary subtractor, and a (#—1)-bit 2x1 multiplexer (MUX).
The critical delay path of the reverse converter of [6] consists
of three CSAs, a (n—1)-bit modulo (2"'-1) adder and (2n—1)-
bit subtractor. The use of two CSAs with EAC, and two
modulo adders that work in parallel, resulted in reducing the
conversion delay, but the hardware cost increased. Also,
recently, the new three-moduli set {2""'—1, 2", 2”1} has been
proposed by Mohan [7]. He introduced three reverse
converters for this moduli set by using CRT and MRC
algorithms.

TABLE III PERFORMANCE COMPARISON

Converters Complexity Delay Time-complexity
[5] ((61 53;?3\1‘% (5n—4)tea 601>
[6] ((17;’21)31&% (Bnt2)tea 510
[7]-CI (%9::33))2\‘?]’) (61+5)iga 54
[7]-CII (ﬁ?ﬂﬁs))gﬁf) Qn+7)tga 60n°
[7]-CIIl (%iﬁ‘;()’)ggb QT 461
Proposed (%A}‘g:zl(;)gg ]’) (nt11)tep 24n?

Table III compares the performance of the different reverse
converters for the moduli set {2”, 2”1, 2"'~1} as well as the
reverse converters for moduli set {2""'—1, 2", 2"-1}. As seen
from Table III, the proposed converter is the fastest between
the other existing methods for moduli set {2, 2”1, 2"'—1}.
However, the hardware cost of the presented converter is
much. But it is essential to remark to the point that, the reverse
converters of [5] and [6], both use modular adders. They used
the method of [12] for the implementation of the needed
modular adders. While, we present the full design of the
reverse converter without using modular adders. Because of
the complex structure of the modular adder of [12], the authors
of [6], assumed the cost and the delay of the modular adder of
[12] are nFA and ntpa, respectively. But these estimations are
not exact, and the real cost and delay of the adder of [12] are
much more. With considering these points, the proposed
converter has a much better area-time complexity than
converter of [6]. Also, it can be seen that the proposed
converter is faster than the reverse converters of [7], and also
it has better hardware complexity than converters [7]-CII and
[7]-CIII. Even if proposed converter consume more hardware
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but it demonstrated significant improvement in terms of speed
in comparison to [7]-CI.

VI. CONCLUSION

This paper presents an efficient reverse converter for the
well-known RNS moduli set {2”, 2”1, 2"'~1}. The hardware
architecture of the proposed converter consists of regular
binary adders and logic gates, without the need for using
modular adders. Also, the presented reverse converter results
in significant improvement in terms of conversion delay and
time-complexity, compared to the last works.
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