WASET
	%0 Journal Article
	%A Ritu Ahlawat
	%D 2010
	%J International Journal of Geological and Environmental Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 47, 2010
	%T Space-Time Variation in Rainfall and Runoff: Upper Betwa Catchment
	%U https://publications.waset.org/pdf/4351
	%V 47
	%X Among all geo-hydrological relationships, rainfallrunoff
relationship is of utmost importance in any hydrological
investigation and water resource planning. Spatial variation, lag time
involved in obtaining areal estimates for the basin as a whole can
affect the parameterization in design stage as well as in planning
stage. In conventional hydrological processing of data, spatial aspect
is either ignored or interpolated at sub-basin level. Temporal
variation when analysed for different stages can provide clues for its
spatial effectiveness. The interplay of space-time variation at pixel
level can provide better understanding of basin parameters.
Sustenance of design structures for different return periods and their
spatial auto-correlations should be studied at different geographical
scales for better management and planning of water resources.
In order to understand the relative effect of spatio-temporal
variation in hydrological data network, a detailed geo-hydrological
analysis of Betwa river catchment falling in Lower Yamuna Basin is
presented in this paper. Moreover, the exact estimates about the
availability of water in the Betwa river catchment, especially in the
wake of recent Betwa-Ken linkage project, need thorough scientific
investigation for better planning. Therefore, an attempt in this
direction is made here to analyse the existing hydrological and
meteorological data with the help of SPSS, GIS and MS-EXCEL
software. A comparison of spatial and temporal correlations at subcatchment
level in case of upper Betwa reaches has been made to
demonstrate the representativeness of rain gauges. First, flows at
different locations are used to derive correlation and regression
coefficients. Then, long-term normal water yield estimates based on
pixel-wise regression coefficients of rainfall-runoff relationship have
been mapped. The areal values obtained from these maps can
definitely improve upon estimates based on point-based
extrapolations or areal interpolations.
	%P 549 - 555