Time and Distance Dependence of Protons Energy Loss for Laser (pw-ps) Fusion Driven Ion Acceleration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32807
Time and Distance Dependence of Protons Energy Loss for Laser (pw-ps) Fusion Driven Ion Acceleration

Authors: B. Malekynia

Abstract:

The anomalous generation of plasma blocks by interaction of petawatt-picosecond laser pulses permits side-on ignition of uncompressed solid fusion fuel following an improved application of the hydrodynamic Chu-model for deuterium-tritium. The new possibility of side-on laser ignition depends on accelerated ions and produced ions beams of high energy particles by the nonlinear ponderomotive force of the laser pulse in the plasma block, a re-evaluation of the early hydrodynamic analysis for ignition of inertial fusion by including inhibition factor, collective effect of stopping power of alpha particles and the energy loss rate reabsorption to plasma by the protons of plasma blocks being reduced by about a factor 40.

Keywords: Block ignition, Charged particles, Reabsorption, Skin layer ponderomotive acceleration.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1331587

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493

References:


[1] J. Badziack, Laser-driven generation of fast particles, Opto-Electronic Review, 2007, 15, 1-12.
[2] E. Bagge, H. Hora, Calculation of the reduced penetration depth of relativistic electrons in plasmas for nuclear fusion, Atomkernenergie , 1974, 24, 143-146.
[3] J.L. Bobin, Nuclear fusion reactions in front propagating in solid DT. In Laser Interaction and Related Plasma Phenomena (Schwarz H. & Hora H., Eds.). New York: Plenum Press, 1974, Vol. 4B, 465-494.
[4] S. T. Butler and M. J. Buckingham, Energy Loss of a Fast Ion in plasma, Physical Review, 1962, 126, 1.
[5] S. Chandrasekhar, The time of relaxation of stellar systems, Astrophys. J., 1941, 93, 285.
[6] M.S. Chu, Thermonuclear Reaction Waves at High Density. Phys. Fluids, 1972, 15, 412-422.
[7] D. Gabor, Wave theory of plasmas. Proc. Roy. Soc. London, 1952, A 213, 72-86.
[8] M. Ghorannviss, B. Malekynia, H. Hora, G. H. Miley, X. He, Inhibition factor reduces fast ignition threshold for laser fusion using nonlinear force driven block acceleration, Laser and Particle Beams, 2008, 26, 105.
[9] H. Hora, P.S. Ray, Increased nuclear fusion yields of inertially confined DT plasma due to reheat. Zeitschrift f. Naturforschung, 1978, A33 890- 894.
[10] H. Hora, J. Badziack, M. N. Read, Yu-Tong Li, Tian-Jiaoliang, Yu cang, Hong Liu, Zheng-Ming Sheng, Jie Zhang, F. Osman, G.H. Miley, Weiyan Zhang, Xianto He, H. Peng, S. Glowacz, S. Jablonski, J. Wolowski, Z. Sklandanowski, K. Jungwirth, K. Rohlena, J. Ullschemied, Physics of Plasmas , 2007, 14, 072701-1 - 072701-7.
[11] H. Hora, B. Malekynia, M. Ghoranneviss, G.H. Miley, X.T. He, Twenty times lower ignition threshold for laser driven fusion using collective effects and the inhibition factor. Appl. Phys. Letters, 2008, 93, 011101.
[12] R.C. Kirkpatrick, J.A.Wheeler, Volume ignition of laser compressed plasmas, Nuclear Fusion, 1981, 21, 398-404.
[13] J.R. Kerns, C.W. Rogers, J.G. Clark, Penetration of terawatt electron beam in polyethyens. Bulletin Am. Phys. Soc., 1972, 17, 692.
[14] H.C. Kranzer, Thermalization of a fast ion in a plasma. Phys. Fluids, 1961, 4, 214-221.
[15] K.S. Lackner, S.A. Colgate, N.L. Johnson, R.C. Kirkpatrick, R. Menikoff, A.G. Petschek, Equilibrium Ignition for ICF Capsules, Laser Interaction and Related Plasma Phenomena, AIP Conf. Proceedings No. 318, G.H. Miley ed., New York: Am. Inst. Phys, 1994, p. 356-361.
[16] B. Malekynia, H. Hora, M. Ghoranneviss, G.H. Miley, Collective alpha particle stopping for reduction of the threshold for laser fusion using nonlinear force driven plasma blocks, Laser & Part. Beams, 2009, 27, 233-241.
[17] P.S. Ray, H. Hora, Corrected penetration length for slphas for reheat calculations. Laser Interaction and Related Plasma Phenomena. H. Scharz and H. Hora eds, New York: Plenum Press, 1977, Vol. 4B, 1081-1101.
[18] L. Spitzer, Physics of Ionized Gases, Interscience publishers, Inc., New York, 1962.
[19] J. Stepanek, Charged particle loss rates and ranges in plasma. In Laser Interaction and Related Plasma Phenomena, New York: Plenum Press (Schwarz, H., Hora, H., Lubin, M., Yaakobi, B., eds.), 1981, Vol. 5, pp. 341-351.