WASET
	%0 Journal Article
	%A Karam Y. Maalawi
	%D 2009
	%J International Journal of Mechanical and Mechatronics Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 33, 2009
	%T Buckling Optimization of Radially-Graded, Thin-Walled, Long Cylinders under External Pressure
	%U https://publications.waset.org/pdf/361
	%V 33
	%X This paper presents a generalized formulation for the
problem of buckling optimization of anisotropic, radially graded,
thin-walled, long cylinders subject to external hydrostatic pressure.
The main structure to be analyzed is built of multi-angle fibrous
laminated composite lay-ups having different volume fractions of the
constituent materials within the individual plies. This yield to a
piecewise grading of the material in the radial direction; that is the
physical and mechanical properties of the composite material are
allowed to vary radially. The objective function is measured by
maximizing the critical buckling pressure while preserving the total
structural mass at a constant value equals to that of a baseline
reference design. In the selection of the significant optimization
variables, the fiber volume fractions adjoin the standard design
variables including fiber orientation angles and ply thicknesses. The
mathematical formulation employs the classical lamination theory,
where an analytical solution that accounts for the effective axial and
flexural stiffness separately as well as the inclusion of the coupling
stiffness terms is presented. The proposed model deals with
dimensionless quantities in order to be valid for thin shells having
arbitrary thickness-to-radius ratios. The critical buckling pressure
level curves augmented with the mass equality constraint are given
for several types of cylinders showing the functional dependence of
the constrained objective function on the selected design variables. It
was shown that material grading can have significant contribution to
the whole optimization process in achieving the required structural
designs with enhanced stability limits.
	%P 1088 - 1095