Optical Coherence Tomography Combined with the Confocal Microscopy Method and Fluorescence for Class V Cavities Investigations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Optical Coherence Tomography Combined with the Confocal Microscopy Method and Fluorescence for Class V Cavities Investigations

Authors: M. Rominu, C. Sinescu, A.G. Podoleanu

Abstract:

The purpose of this study is to present a non invasive method for the marginal adaptation evaluation in class V composite restorations. Standardized class V cavities, prepared in human extracted teeth, were filled with Premise (Kerr) composite. The specimens were thermo cycled. The interfaces were examined by Optical Coherence Tomography method (OCT) combined with the confocal microscopy and fluorescence. The optical configuration uses two single mode directional couplers with a superluminiscent diode as the source at 1300 nm. The scanning procedure is similar to that used in any confocal microscope, where the fast scanning is enface (line rate) and the depth scanning is much slower (at the frame rate). Gaps at the interfaces as well as inside the composite resin materials were identified. OCT has numerous advantages which justify its use in vivo as well as in vitro in comparison with conventional techniques.

Keywords: Class V Cavities, Marginal Adaptation, Optical Coherence Tomography Fluorescence, Confocal Microscopy

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1330559

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522

References:


[1] Cosmin Sinescu, Meda Negrutiu, Carmen Todea, Adrian Gh. Podoleanu, Mike Huighes, Philippe Laissue, Cezar Clonda - Optical Coherecte Tomography as a non invasive method used in ceramic material defects identification in fixed partial dentures, Dental Target, nr. 5, year II, 2007.
[2] A. Gh. Podoleanu, J. A. Rogers, D. A. Jackson, S. Dunne, Three dimensional OCT images from retina and skin Opt. Express, Vol. 7, No. 9, p. 292-298, (2000), http://www.opticsexpress.org/framestocv7n9.htm.
[3] B. R. Masters, Three-dimensional confocal microscopy of the human optic nerve in vivo, Opt. Express, 3, 356-359 (1998), http://epubs.osa.org/oearchive/source/6295.htm.
[4] J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, Optical coherence microscopy in scattering media, Opt. Lett. 19, 590-593 (1994).
[5] C. C. Rosa, J. Rogers, and A. G. Podoleanu, Fast scanning transmissive delay line for optical coherence tomography, Opt. Lett. 30, 3263-3265 (2005).
[6] A. Gh.P odoleanu, G. M. Dobre, D. J. Webb, D. A. Jackson, Coherence imaging by use of a Newton rings sampling function, Optics Letters, 21(21), 1789, 1996.
[7] A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson and F. Fitzke, Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry, Journal of Biomedical Optics, 3, 12, 1998
[8] Cosmin Sinescu, Adrian Podoleanu, Meda Negrutiu, Mihai Romînu - Optical coherent tomography investigation on apical region of dental roots, European Cells & Materials Journal, Vol. 13, Suppl. 3, 2007, p.14, ISSN 1473-2262.
[9] C Sinescu, A Podoleanu, M Negrutiu, C Todea, D Dodenciu, M Rominu, Material defects investigation in fixed partial dentures using optical coherence tomography method, European Cells and Materials Vol. 14. Suppl. 3, ISSN 1473-2262, 2007.
[10] Roxana Romînu, C Sinescu, A Podoleanu, M Negrutiu, M Rominu, A Soicu, C Sinescu, The quality of bracket bonding studied by means of oct investigation. A preliminary study, European Cells and Materials Vol. 14. Suppl. 3, ISSN 1473-2262, 2007.
[11] Cosmin Sinescu, Meda Lavinia Negrutiu, Carmen Todea, Cosmin Balabuc, Laura Filip, and Roxana Rominu, Adrian Bradu, Michael Hughes, and Adrian Gh. Podoleanu, Quality assessment of dental treatments using enface optical coherence tomography, J. Biomed. Opt., Vol. 13, 054065 (2008).
[12] F. Erdogan, G.C. Sih : On the crack extension in plates under plane loading and transverse shear, J Basic Engineering vol. 85, 4, (1963).
[13] Wawrzynek P.A., Ingraffea A. R.: Discrete modeling of crack propagation: theoretical aspects and implementation issues in two and three dimensions. Cornell University, Ithaca, NY, (1991).
[14] Denise Arliane Amarante de Camargo, Mário Alexandre Coelho Sinhoreti, Lourenço Correr-Sobrinho, Manoel Damião de Sousa Neto, Simonides Consani: Influence of the methodology and evaluation criteria on determining microleakage in dentin-restorative interfaces, Clin Oral Invest 10:317-323(2006).
[15] Marianne Federlin, Birger Thonemann, Karl-Anton Hiller, Christina Fertig, Gottfried Schmalz : Microleakage in class II composite resin restorations:application of a clearing protocol, Clin Oral Invest 6:84- 91(2002).