WASET
	%0 Journal Article
	%A Sanghoon Kim and  Sun-Tae Chung and  Souhwan Jung and  Dusik Oh and  Jaemin Kim and  Seongwon Cho
	%D 2007
	%J International Journal of Computer and Information Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 9, 2007
	%T Multi-Scale Gabor Feature Based Eye Localization
	%U https://publications.waset.org/pdf/3247
	%V 9
	%X Eye localization is necessary for face recognition and
related application areas. Most of eye localization algorithms reported
so far still need to be improved about precision and computational
time for successful applications. In this paper, we propose an eye
location method based on multi-scale Gabor feature vectors, which is
more robust with respect to initial points. The eye localization based
on Gabor feature vectors first needs to constructs an Eye Model Bunch
for each eye (left or right eye) which consists of n Gabor jets and
average eye coordinates of each eyes obtained from n model face
images, and then tries to localize eyes in an incoming face image by
utilizing the fact that the true eye coordinates is most likely to be very
close to the position where the Gabor jet will have the best Gabor jet
similarity matching with a Gabor jet in the Eye Model Bunch. Similar
ideas have been already proposed in such as EBGM (Elastic Bunch
Graph Matching). However, the method used in EBGM is known to be
not robust with respect to initial values and may need extensive search
range for achieving the required performance, but extensive search
ranges will cause much more computational burden. In this paper, we
propose a multi-scale approach with a little increased computational
burden where one first tries to localize eyes based on Gabor feature
vectors in a coarse face image obtained from down sampling of the
original face image, and then localize eyes based on Gabor feature
vectors in the original resolution face image by using the eye
coordinates localized in the coarse scaled image as initial points.
Several experiments and comparisons with other eye localization
methods reported in the other papers show the efficiency of our
proposed method.
	%P 2689 - 2693