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Abstract—In this paper, we derive some algebraic identities on
right and left neighbors R(F ) and L(F ) of an indefinite binary
quadratic form F = F (x, y) = ax2 + bxy + cy2 of discriminant
Δ = b2 − 4ac. We prove that the proper cycle of F can be given by
using its consecutive left neighbors. Also we construct a connection
between right and left neighbors of F .
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I. PRELIMINARIES.

A real binary quadratic form F is a polynomial in two
variables x and y of the type

F = F (x, y) = ax2 + bxy + cy2 (1)

with real coefficients a, b, c. We denote it by F = (a, b, c).
The discriminant of F is defined by the formula b2 − 4ac and
is denoted by Δ = Δ(F ). F is an integral form if and only if
a, b, c ∈ Z, and is called indefinite if and only if Δ(F ) > 0.
An indefinite form F = (a, b, c) of discriminant Δ is said to
be reduced if ∣∣∣√Δ − 2|a|

∣∣∣ < b <
√

Δ. (2)

Most properties of quadratic forms can be giving by the aid
of extended modular group Γ (see [5]). Gauss (1777-1855)
defined the group action of Γ on the set of forms as follows:

gF (x, y) =
(
ar2 + brs + cs2

)
x2

+ (2art + bru + bts + 2csu) xy (3)

+
(
at2 + btu + cu2

)
y2

for g =
(

r s
t u

)
∈ Γ. Hence two forms F and G are called

equivalent if and only if there exists a g ∈ Γ such that gF = G.
If det g = 1, then F and G are called properly equivalent, and
if det g = −1, then F and G are called improperly equivalent.
If a form F is improperly equivalent to itself, then it called
ambiguous.

Let ρ(F ) denotes the normalization (it means that replacing
F by its normalization) of (c,−b, a). To be more explicit, we
set

ρi(F ) = (c,−b + 2cri, cr
2
i − bri + a), (4)

where

ri = ri(F ) =

⎧⎪⎪⎨
⎪⎪⎩

sign(c)
⌊

b
2|c|

⌋
for |c| ≥ √

Δ

sign(c)
⌊

b+
√

Δ
2|c|

⌋
for |c| <

√
Δ

(5)
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for i ≥ 0. Then the number ri is called the reducing number
and the form ρi(F ) is called the reduction of F . Further, if F
is reduced, then so is ρi(F ) by (2). In fact, ρi is a permutation
of the set of all reduced indefinite forms.

Now consider the following transformations

χ(F ) = χ(a, b, c) = (−c, b,−a)
τ(F ) = τ(a, b, c) = (−a, b,−c).

If χ(F ) = F , that is, F = (a, b,−a), then F is called
symmetric. The cycle of F is the sequence ((τρ)i(G)) for
i ∈ Z, where G = (A,B, C) is a reduced form with A > 0
which is equivalent to F . The cycle and proper cycle of F
can be given by the following theorem.

Theorem 1.1: Let F = (a, b, c) be a reduced indefinite
quadratic form of discriminant Δ. Then the cycle of F is
a sequence F0 ∼ F1 ∼ F2 ∼ · · · ∼ Fl−1 of length l, where
F0 = F = (a0, b0, c0),

si = |s(Fi)| =

⌊
bi +

√
Δ

2|ci|

⌋

and

Fi+1 = (ai+1, bi+1, ci+1)
=

(|ci|, −bi + 2si|ci|, −(ai + bisi + cis
2
i )

)
for 1 ≤ i ≤ l − 2. If l is odd, then the proper cycle of F is

F0 ∼ τ(F1) ∼ F2 ∼ τ(F3) ∼ · · · ∼ τ(Fl−2) ∼ Fl−1 ∼
τ(F0) ∼ F1 ∼ τ(F2) ∼ · · · ∼ Fl−2 ∼ τ(Fl−1)

of length 2l and if l is even, then the proper cycle of F is

F0 ∼ τ(F1) ∼ F2 ∼ τ(F3) ∼ · · · ∼ Fl−2 ∼ τ(Fl−1)

of length l. In this case the equivalence class of F is the
disjoint union of the proper equivalence class of F and the
proper equivalence class of τ(F ). [1], [4]

The right neighbor of F = (a, b, c) is denoted by R(F ) is
the form (A,B,C) determined by A = c, b+B ≡ 0(mod 2A),√

Δ− 2|A| < B <
√

Δ and B2 − 4AC = Δ. It is clear from
definition that

R(F ) =
(

0 −1
1 −δ

)
(a, b, c), (6)

where b + B = 2cδ. The left neighbor is hence

L(F ) =
(

0 1
1 0

)
R(c, b, a) = χτ(R(c, b, a)). (7)

So F is properly equivalent to its right and left neighbors (for
further details on binary quadratic forms see [1], [2], [3], [4]).
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II. NEIGHBORS OF INDEFINITE QUADRATIC FORMS.

In this section, we will derive some properties of neighbors
of indefinite quadratic forms. In [6], we proved the following
theorem.

Theorem 2.1: Let F0 ∼ F1 ∼ · · · ∼ Fl−1 be the cycle of F
of length l and let Ri(F0) be the consecutive right neighbors
of F = F0 for i ≥ 0.

1) If l is odd, then the proper cycle of F is

F0 ∼ R1(F0) ∼ R2(F0) ∼ · · · ∼ R2l−2(F0) ∼ R2l−1(F0)

of length 2l.
2) If l is even, then the proper cycle of F is

F0 ∼ R1(F0) ∼ R2(F0) ∼ · · · ∼ Rl−2(F0) ∼ Rl−1(F0)

of length l.

Also we proved that if l is odd, then R
l−1
2 (F0) and

R
3l−1

2 (F0) are the symmetric right neighbors of F . Further
we proved the following corollary and two theorems in [6].

Corollary 2.2: Let F0 ∼ F1 ∼ · · · ∼ Fl−1 be the cycle of
F of length l.

1) If l is odd, then

Ri(F0) =
{

Fi i is even
τ(Fi) i is odd

for 1 ≤ i ≤ l − 1 and

Ri(F0) =
{

Fi−l i is even
τ(Fi−l) i is odd

for l ≤ i ≤ 2l − 1.
2) If l is even, then

Ri(F0) =
{

Fi i is even
τ(Fi) i is odd

for 1 ≤ i ≤ l − 1.

Theorem 2.3: If l is odd, then F has 2l−1 right neighbors
and if l is even, then F has l − 1 right neighbors.

Theorem 2.4: If l is odd, then
1) Ri(F0) = χτ(R2l−1−i(F0)) for 1 ≤ i ≤ 2l − 2 and

R2l−1(F0) = χτ(F0).
2) Ri(F0) = τ(Ri+l(F0)), Rl(F0) = τ(F0) for l ≤ i ≤

l − 1 and Ri(F0) = τ(Ri−l(F0)) for l + 1 ≤ i ≤ 2l − 1.

In [7], we also derived some algebraic identities on proper
cycles and right neighbors of F . Now we can return our
problem. Then we can give the following theorems.

Theorem 2.5: If l is odd, then in the proper cycle of F , we
have

1) Ri(F0) = τ(Fi−l) for l ≤ i ≤ 2l − 1.
2) χτ(Ri(F0)) = R2l−1−i(F0) for 0 ≤ i ≤ l − 1.

Proof: 1) Let F0 = F = (a0, b0, c0). Then applying (6),
we get

F0 = (a0, b0, c0)
R1(F0) = (a1, b1, c1)
R2(F0) = (a2, b2, c2)

· · ·
R

l−3
2 (F0) =

(
a l−3

2
, b l−3

2
, c l−3

2

)
R

l−1
2 (F0) =

(
a l−1

2
, b l−1

2
, c l−1

2

)
R

l+1
2 (F0) =

(
−c l−3

2
, b l−3

2
,−a l−3

2

)
· · ·

Rl−3(F0) = (−c2, b2,−a2)
Rl−2(F0) = (−c1, b1,−a1)
Rl−1(F0) = (−c0, b0,−a0)

Rl(F0) = (−a0, b0,− c0)
Rl+1(F0) = (−a1, b1,−c1)
Rl+2(F0) = (−a2, b2, −c2)

· · ·
R

3l−3
2 (F0) =

(
−a l−3

2
, b l−3

2
,−c l−3

2

)
R

3l−1
2 (F0) =

(
−a l−1

2
, b l−1

2
,−c l−1

2

)
R

3l+1
2 (F0) =

(
c l−3

2
, b l−3

2
, a l−3

2

)
· · ·

R2l−3(F0) = (c2, b2, a2)
R2l−2(F0) = (c1, b1, a1)
R2l−1(F0) = (c0, b0, a0).

Hence it is clear that

Rl(F0) = τ(F0)
Rl+1(F0) = τ(F1)
Rl+2(F0) = τ(F2)

· · ·
R

3l−3
2 (F0) = τ(F l−3

2
)

R
3l−1

2 (F0) = τ(F l−1
2

)

R
3l+1

2 (F0) = τ(F l+1
2

)
· · ·

R2l−3(F0) = τ(Fl−3)
R2l−2(F0) = τ(Fl−2)
R2l−1(F0) = τ(Fl−1).

So Ri(F0) = τ(Fi−l) for l ≤ i ≤ 2l − 1.
2) Similarly we find that

χτ(F0) = R2l−1(F0)
χτ(R1(F0)) = R2l−2(F0)
χτ(R2(F0)) = R2l−3(F0)

· · ·
χτ(R

l−3
2 (F0)) = R

3l+1
2 (F0)
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χτ(R
l−1
2 (F0)) = R

3l−1
2 (F0)

χτ(R
l+1
2 (F0)) = R

3l−3
2 (F0)

· · ·
χτ(Rl−3(F0)) = Rl+2(F0)
χτ(Rl−2(F0)) = Rl+1(F0)
χτ(Rl−1(F0)) = Rl(F0).

So χτ(Ri(F0)) = R2l−1−i(F0) for 0 ≤ i ≤ l − 1.

Now we consider the left neighbors of F . Recall that the
left neighbor of F is defined to be

L(F ) = L(a, b, c) =
(

0 1
1 0

)
R(c, b, a).

Then we can give the following theorem.

Theorem 2.6: Let F0 ∼ F1 ∼ · · · ∼ Fl−1 denote the cycle
of F . If l is odd, then

1)

Li(F0) =
{

τ(Fl−i) i is odd
Fl−i i is even

for 1 ≤ i ≤ l and

Li(F0) =
{

τ(F2l−i) i is odd
F2l−i i is even

for l + 1 ≤ i ≤ 2l.
2)

τ(Li(F0)) =
{

Fl−i i is odd
τ(Fl−i) i is even

for 1 ≤ i ≤ l and

τ(Li(F0)) =
{

F2l−i i is odd
τ(F2l−i) i is even

for l + 1 ≤ i ≤ 2l.
3)

χ(Li(F0)) =
{

τ(Fi−1) i is odd
Fi−1 i is even

for 1 ≤ i ≤ l and

χ(Li(F0)) =
{

τ(Fi−l−1) i is odd
Fi−l−1 i is even

for l + 1 ≤ i ≤ 2l.

Proof: 1) Applying (7), we get

L1(F0) = (c0, b0, a0) = τ(Fl−1)
L2(F0) = (−c1, b1,−a1) = Fl−2

L3(F0) = (c2, b2, a2) = τ(Fl−3)
· · ·

Ll(F0) = (−a0, b0, −c0) = τ(F0)
Ll+1(F0) = (−c0, b0,−a0) = Fl−2

· · ·
L2l−1(F0) = (−a1, b1,−c1) = τ(F1)

L2l(F0) = (a0, b0, c0) = F0.

So the result is clear. The others can be proved similarly.

Note that we proved in Theorem 2.1 that the proper cycle
of F can be given by using its consecutive right neighbors.
Similarly we can give the following theorem.

Theorem 2.7: Let Li(F ) denote the consecutive left neigh-
bors of F .

1) If l is odd, then the proper cycle of F = F0 is

F0 ∼ L2l−1(F0) ∼ · · · ∼ L2(F0) ∼ L1(F0)

of length 2l.
2) If l is even, then the proper cycle of F = F0 is

F0 ∼ Ll−1(F0) ∼ · · · ∼ L2(F0) ∼ L1(F0)

of length l.

Proof: 1) Let l be odd. Then by Theorem 1.1 the proper
cycle of F is

F0 ∼ τ(F1) ∼ F2 ∼ τ(F3) ∼ · · · ∼ τ(Fl−2) ∼ Fl−1 ∼
τ(F0) ∼ F1 ∼ τ(F2) ∼ · · · ∼ Fl−2 ∼ τ(Fl−1)

of length 2l. We also see Theorem 2.6 that

Li(F0) =
{

τ(Fl−i) i is odd
Fl−i i is even

for 1 ≤ i ≤ l and

Li(F0) =
{

τ(F2l−i) i is odd
F2l−i i is even

for l + 1 ≤ i ≤ 2l. So the proper cycle of F is F0 ∼
L2l−1(F0) ∼ · · · ∼ L2(F0) ∼ L1(F0).

Similarly it can be shown that if l is even, then the proper
cycle of F is F0 ∼ Ll−1(F0) ∼ · · · ∼ L2(F0) ∼ L1(F0).

Example 2.1: 1) The cycle of F = (1, 5,−4) is F0 = (1,
5,−4) ∼ F1 = (4, 3,−2) ∼ F2 = (2, 5,−2) ∼ F3 = (2,
3,−4) ∼ F4 = (4, 5,−1) of length 5. So its proper cycle is
hence

F0 = (1, 5,−4) ∼ F1 = (−4, 3, 2) ∼ F2 = (2, 5,−2) ∼
F3 = (−2, 3, 4) ∼ F4 = (4, 5,−1) ∼ F5 = (−1, 5, 4) ∼
F6 = (4, 3,−2) ∼ F7 = (−2, 5, 2) ∼ F8 = (2, 3,−4) ∼
F9 = (−4, 5, 1)

of length 10. The consecutive left neighbors of F are

L1(F ) = (−4, 5, 1), L2(F ) = (2, 3,−4),
L3(F ) = (−2, 5, 2), L4(F ) = (4, 3,−2),
L5(F ) = (−1, 5, 4), L6(F ) = (4, 5,−1),
L7(F ) = (−2, 3, 4), L8(F ) = (2, 5,−2),
L9(F ) = (−4, 3, 2), L10(F ) = F.

So it is easily seen that the proper cycle of F is

F ∼ L9(F ) ∼ L8(F ) ∼ L7(F ) ∼ L6(F ) ∼ L5(F ) ∼
L4(F ) ∼ L3(F ) ∼ L2(F ) ∼ L1(F ).
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2) The cycle of F = (1, 8,−5) is F0 = (1, 8,−5) ∼ F1 =
(5, 2,−4) ∼ F2 = (4, 6,−3) ∼ F3 = (3, 6,−4) ∼ F4 =
(4, 2,−5) ∼ F5 = (5, 8,−1) of length 6. So its proper cycle
is

F0 = (1, 8,−5) ∼ F1 = (−5, 2, 4) ∼ F2 = (4, 6,−3) ∼
F3 = (−3, 6, 4) ∼ F4 = (4, 2,−5) ∼ F5 = (−5, 8, 1).

The left neighbors of F are

L1(F ) = (−5, 8, 1), L2(F ) = (4, 2,−5),
L3(F ) = (−3, 6, 4), L4(F ) = (4, 6,−3),
L5(F ) = (−5, 2, 4), L6(F ) = F.

So its proper cycle is F ∼ L5(F ) ∼ L4(F ) ∼ L3(F ) ∼
L2(F ) ∼ L1(F ).

From above theorem, we can give the following result.

Theorem 2.8: If l is odd, then F has 2l − 1 left neighbors
and if l is even it has l − 1 left neighbors.

Proof: Let l be odd. Then we get

F0 = (a0, b0, c0)
F1 = (a1, b1, c1)
F2 = (a2, b2, c2)
F3 = (a3, b3, c3)

· · ·
F l−3

2
=

(
a l−3

2
, b l−3

2
, c l−3

2

)
F l−1

2
=

(
a l−1

2
, b l−1

2
,−a l−1

2

)
F l+1

2
=

(
−c l−3

2
, b l−3

2
,−a l−3

2

)
· · ·

Fl−3 = (−c2, b2,−a2)
Fl−2 = (−c1, b1,−a1)
Fl−1 = (−c0, b0,−a0).

The first left neighbor of F = F0 is

L1(F0) = (a1, b1, c1)

=
(

0 1
1 0

)
R(c0, b0, a0)

=
(

0 1
1 0

)
(a0,−b0 + 2a0δ0, c0 − δ0b0 + a0δ

2
0)

= (c0 − δ0b0 + a0δ
2
0 ,−b0 + 2a0δ0, a0)

= (c0, b0, a0).

Similarly we obtain

L2(F0) = (−c1, b1,−a1)
L3(F0) = (c2, b2, a2)
L4(F0) = (−c3, b3,−a3)

· · ·
Ll(F0) = (−a0, b0,−c0)

Ll+1(F0) = (−c0, b0,−a0)

· · ·
L2l−1(F0) = (−a1, b1,−c1)

L2l(F0) = (a0, b0, c0) = F0.

So F has 2l−1 left neighbors. Similarly it can be shown that
F has l − 1 left neighbors if l is even.

Theorem 2.9: Let F0 ∼ F1 ∼ · · · ∼ Fl−1 be the cycle of
F of length l. If l is odd, then

1) L(Fi) = τ(Fi−1) for 1 ≤ i ≤ l − 1 and L(F0) =
τ(Fl−1).

2) L(Fi) = χτ(Fl−i) for 1 ≤ i ≤ l − 1 and L(F0) =
χτ(F0).

Proof: 1) Let F = F0 = (a0, b0, c0). Then

F1 = (a1, b1, c1)
=

(|c0|, −b0 + 2s0|c0|, −(a0 + b0s0 + c0s
2
0)

)
=

(−c0, −b0 − 2s0c0, −a0 − b0s0 − c0s
2
0

)
. (8)

Now we try to determine the first left neighbor of F1. Applying
its definition, we get

L(F1) = L
(−c0, −b0 − 2s0c0, −a0 − b0s0 − c0s

2
0

)
=

(
0 1
1 0

)
R

(−a0 − b0s0 − c0s
2
0,−b0 − 2s0c0,−c0

)
. (9)

So we have to find out the right neighbor of (−a0 − b0s0 −
c0s

2
0,−b0 − 2s0c0,−c0). To get this we make the change of

variables x → y and y → −x − δ0y. Then we get

R
(−a0 − b0s0 − c0s

2
0,−b0 − 2s0c0,−c0

)
= (−a0 − b0s0 − c0s

2
0)y

2 + (−b0 − 2s0c0)y(−x − δ0y)
+(−c0)(−x − δ0y)2

= −c0x
2 + (b0 + 2c0s0 − 2c0δ0)xy (10)

+(−a0 − b0s0 − c0s
2
0 + b0δ0 + 2s0c0δ0 − c0δ

2
0)y2.

Also for i = 0, we get s0 = −δ0. So (10) becomes

R
(−a0 − b0s0 − c0s

2
0,−b0 − 2s0c0,−c0

)
= −c0x

2 + (b0 − 2c0δ0 − 2c0δ0)xy

+(−a0 + b0δ0 − c0δ
2
0 + b0δ0 − 2δ2

0c0 − c0δ
2
0)y2. (11)

Since s0 = −δ0 = 0, (11) becomes

R
(−a0 − b0s0 − c0s

2
0,−b0 − 2s0c0,−c0

)
= −c0x

2 + b0xy − a0y
2. (12)

So applying (9) and (12), we get

L(F1) = L
(−c0, −b0 − 2s0c0, −a0 − b0s0 − c0s

2
0

)
=

(
0 1
1 0

)
R

(−a0 − b0s0 − c0s
2
0,−b0 − 2s0c0,−c0

)
=

(
0 1
1 0

)
(−c0, b0,−a0)

= (−a0, b0,−c0)
= τ(F0).

Similarly we find that L(F2) = τ(F1), L(F3) = τ(F2),
· · · , L(Fl−1) = τ(Fl−2) and L(F0) = τ(Fl−1). The other
case can be proved similarly.
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Example 2.2: The cycle of F = (1, 7,−6) is

F0 = (1, 7,−6) ∼ F1 = (6, 5,−2) ∼ F2 = (2, 7,−3) ∼
F3 = (3, 5,−4) ∼ F4 = (4, 3,−4) ∼ F5 = (4, 5,−3) ∼
F6 = (3, 7,−2) ∼ F7 = (2, 5,−6) ∼ F8 = (6, 7,−1).

Then

L(F0) = L(1, 7,−6) = (−6, 7, 1) = τ(F8) = χτ(F0)
L(F1) = L(6, 5,−2) = (−1, 7, 6) = τ(F0) = χτ(F8)
L(F2) = L(2, 7,−3) = (−6, 5, 2) = τ(F1) = χτ(F7)
L(F3) = L(3, 5,−4) = (−2, 7, 3) = τ(F2) = χτ(F6)
L(F4) = L(4, 3,−4) = (−3, 5, 4) = τ(F3) = χτ(F5)
L(F5) = L(4, 5,−3) = (−4, 3, 4) = τ(F4) = χτ(F4)
L(F6) = L(3, 7,−2) = (−4, 5, 3) = τ(F5) = χτ(F3)
L(F7) = L(2, 5,−6) = (−3, 7, 2) = τ(F6) = χτ(F2)
L(F8) = L(6, 7,−1) = (−2, 6, 5) = τ(F7) = χτ(F1)

as we wanted.

From above theorem, we can give the following corollary.

Corollary 2.10: Let F0 ∼ F1 ∼ · · · ∼ Fl−1 be the cycle of
F of length l. If l is odd, then

1) τ(Li(F0)) = Li+l(F0) for 1 ≤ i ≤ l.
2) χ(Li(F0)) = Ll+1−i(F0) for 1 ≤ i ≤ l and χ(Li(F0)) =

L3l+1−i(F0) for l + 1 ≤ i ≤ 2l.

Theorem 2.11: Let F0 ∼ F1 ∼ · · · ∼ Fl−1 be the cycle of
F of length l. If l is odd, then L

l+1
2 (F0) and L

3l+1
2 (F0) are

the symmetric left neighbors of F .

Proof: We know that F has 2l− 1 left neighbors when l
is odd. Also

L1(F0) = (c0, b0, a0)
L2(F0) = (−c1, b1,−a1)
L3(F0) = (c2, b2, a2)

· · ·
L

l−1
2 (F0) = (−a l−1

2
, b l−1

2
, −c l−1

2
)

L
l+1
2 (F0) = (−a l+1

2
, b l+1

2
, −a l+1

2
)

L
l+3
2 (F0) = (c l−1

2
, b l−1

2
, a l−1

2
)

· · ·
Ll(F0) = (−a0, b0,−c0)

Ll+1(F0) = (−c0, b0,−a0)
· · ·

L
3l−1

2 (F0) = (a l−1
2

, b l−1
2

, c l−1
2

)

L
3l+1

2 (F0) = (a l+1
2

, b l+1
2

, −a l+1
2

)

L
3l+3

2 (F0) = (−c l−1
2

, b l−1
2

,−a l−1
2

)
· · ·

L2l−1(F0) = (−a1, b1,−c1)
L2l(F0) = (a0, b0, c0).

So L
l+1
2 (F0) and L

3l+1
2 (F0) are symmetric left neighbors.

Theorem 2.12: If l is odd, then in the proper cycle of F ,
we have

1) Li(F0) = F2l−i for 1 ≤ i ≤ 2l.
2) Li(F0) = τ(Fl−i) for 1 ≤ i ≤ l and Li(F0) = τ(F3l−i)

for l + 1 ≤ i ≤ 2l.
3) Li(F0) = χ(Fl−1+i) for 1 ≤ i ≤ l and Li(F0) =

χ(Fi−l−1) for l + 1 ≤ i ≤ 2l.
4) Li(F0) = χτ(Fi−1) for 1 ≤ i ≤ 2l.

Proof: 1) Before starting our proof, we try to determine
the cycle and proper cycle of F . To get this let F = F0 = (a0,
b0, c0). Then the cycle of F is F0 ∼ F1 ∼ F2 ∼ · · · ∼ Fl−2 ∼
Fl−1, where

F0 = (a0, b0, c0)
F1 = (a1, b1, c1)
F2 = (a2, b2, c2)
F3 = (a3, b3, c3)

· · ·
F l−3

2
=

(
a l−3

2
, b l−3

2
, c l−3

2

)
F l−1

2
=

(
a l−1

2
, b l−1

2
,−a l−1

2

)
F l+1

2
=

(
−c l−3

2
, b l−3

2
,−a l−3

2

)
· · ·

Fl−3 = (−c2, b2,−a2)
Fl−2 = (−c1, b1,−a1)
Fl−1 = (−c0, b0,−a0).

So the proper cycle of F is hence F0 ∼ F1 ∼ F2 ∼ · · · ∼
Fl−1 ∼ Fl ∼ Fl+1 ∼ Fl+2 ∼ · · · ∼ F2l−2 ∼ F2l−1, where

F0 = (a0, b0, c0)
F1 = (−a1, b1,−c1)
F2 = (a2, b2, c2)
F3 = (−a3, b3,−c3)

· · ·
Fl−2 = (c1, b1, a1)
Fl−1 = (−c0, b0,−a0)

Fl = (−a0, b0,−c0)
Fl+1 = (a1, b1, c1)

· · ·
F2l−2 = (−c1, b1,−a1)
F2l−1 = (c0, b0, a0).

Now we determine the left neighbors of F = F0. Then
applying (7), we get

L1(F0) = (c0, b0, a0) = F2l−1

L2(F0) = (−c1, b1,−a1) = F2l−2

· · ·
Ll(F0) = (−a0, b0,−c0) = Fl

Ll+1(F0) = (−c0, b0,−a0) = Fl−1
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· · ·
L2l−1(F0) = (−a1, b1,−c1) = F1

L2l(F0) = (a0, b0, c0) = F0.

So Li(F0) = F2l−i for 1 ≤ i ≤ 2l.

2) Similarly we obtain

L1(F0) = (c0, b0, a0) = τ(Fl−1)
L2(F0) = (−c1, b1,−a1) = τ(Fl−2)

· · ·
Ll−2(F0) = (−a2, b2,− c2) = τ(F2)
Ll−1(F0) = (a1, b1, c1) = τ(F1)

Ll(F0) = (−a0, b0, −c0) = τ(F0)
Ll+1(F0) = (−c0, b0,−a0) = τ(F2l−1)
Ll+2(F0) = (c1, b1, a1) = τ(F2l−2)

· · ·
L2l−1(F0) = (−a1, b1,−c1) = τ(Fl+1)

L2l(F0) = (a0, b0, c0) = τ(Fl).

So Li(F0) = τ(Fl−i) for l ≤ i ≤ l and Li(F0) = τ(F3l−i)
for l + 1 ≤ i ≤ 2l.

The others are proved similarly.

Example 2.3: The cycle of F = (1, 7,−6) is

F0 = (1, 7,−6) ∼ F1 = (6, 5,−2) ∼ F2 = (2, 7,−3) ∼
F3 = (3, 5,−4) ∼ F4 = (4, 3,−4) ∼ F5 = (4, 5,−3) ∼
F6 = (3, 7,−2) ∼ F7 = (2, 5,−6) ∼ F8 = (6, 7,−1)

and hence the proper cycle of is

F0 = (1, 7,−6) ∼ F1 = (−6, 5, 2) ∼ F2 = (2, 7,−3) ∼
F3 = (−3, 5, 4) ∼ F4 = (4, 3,−4) ∼ F5 = (−4, 5, 3) ∼
F6 = (3, 7,−2) ∼ F7 = (−2, 5, 6) ∼ F8 = (6, 7,−1) ∼
F9 = (−1, 7, 6) ∼ F10 = (6, 5,−2) ∼ F11 = (−2, 7, 3) ∼
F12 = (3, 5,−4) ∼ F13 = (−4, 3, 4) ∼ F14 = (4, 5,−3) ∼
F15 = (−3, 7, 2) ∼ F16 = (2, 5,−6) ∼ F17 = (−6, 7, 1).

The left neighbors of F are

L1(F0) = (−6, 7, 1) = F17, L2(F0) = (2, 5,−6) = F16,

L3(F0) = (−3, 7, 2) = F15, L
4(F0) = (4, 5,−3) = F14,

L5(F0) = (−4, 3, 4) = F13, L
6(F0) = (3, 5,−4) = F12

L7(F0) = (−2, 7, 3) = F11, L8(F0) = (6, 5,−2) = F10,

L9(F0) = (−1, 7, 6) = F9, L
10(F0) = (6, 7,−1) = F8,

L11(F0) = (−2, 5, 6) = F7, L
12(F0) = (3, 7,−2) = F6

L13(F0) = (−4, 5, 3) = F5, L14(F0) = (4, 3,−4) = F4,

L15(F0) = (−3, 5, 4) = F3, L
16(F0) = (2, 7,−3) = F2,

L17(F0) = (−6, 5, 2) = F1, L18(F0) = (1, 7,−6) = F0.

Here, L5(F0) and L14(F0) are symmetric left neighbors of F
by Theorem 2.11.

Now we give the connection between right and left neigh-
bors of F . To get this we can give the following theorem.

Theorem 2.13: Let Ri(F0) and Li(F0) be denote the right
and left neighbors of F , respectively.

1) If l is odd, then Li(F0) = R2l−i(F0) for 1 ≤ i ≤ 2l−1.

2) If l is even, then Li(F0) = Rl−i(F0) for 1 ≤ i ≤ l − 1.

Proof: 1) Let l be odd. Then the proper cycle of F
can be given by using its consecutive right neighbors, that
is, F0 ∼ R1(F0) ∼ R2(F0) ∼ · · · ∼ R2l−2(F0) ∼ R2l−1(F0)
by Theorem 2.1. Also by considering the proper cycle F0 ∼
τ(F1) ∼ F2 ∼ τ(F3) ∼ · · · ∼ τ(Fl−2) ∼ Fl−1 ∼ τ(F0) ∼
F1 ∼ τ(F2) ∼ · · · ∼ Fl−2 ∼ τ(Fl−1) of F , we get

Ri(F0) =
{

Fi i is even
τ(Fi) i is odd

for 1 ≤ i ≤ l − 1 and

Ri(F0) =
{

Fi−l i is even
τ(Fi−l) i is odd

for l ≤ i ≤ 2l − 1 by Corollary 2.2. Also

Li(F0) =
{

τ(Fl−i) i is odd
Fl−i i is even

for 1 ≤ i ≤ l and

Li(F0) =
{

τ(F2l−i) i is odd
F2l−i i is even

for l + 1 ≤ i ≤ 2l. On the other hand, since the proper cycle
of F is L2l(F0) ∼ L2l−1(F0) ∼ · · · ∼ L2(F0) ∼ L1(F0), we
conclude that Li(F0) = R2l−i(F0) for 1 ≤ i ≤ 2l − 1.

Similarly if l is even, then Li(F0) = Rl−i(F0) for 1 ≤ i ≤
l − 1.

Example 2.4: 1) The cycle of F = (1, 5,−4) is F0 = (1, 5,
−4) ∼ F1 = (4, 3,−2) ∼ F2 = (2, 5, −2) ∼ F3 = (2, 3,
−4) ∼ F4 = (4, 5,−1). The consecutive left and right neigh-
bors of F are

L1(F ) = (−4, 5, 1) = R9(F )
L2(F ) = (2, 3,−4) = R8(F )
L3(F ) = (−2, 5, 2) = R7(F )
L4(F ) = (4, 3,−2) = R6(F )
L5(F ) = (−1, 5, 4) = R5(F )
L6(F ) = (4, 5,−1) = R4(F )
L7(F ) = (−2, 3, 4) = R3(F )
L8(F ) = (2, 5,−2) = R2(F )
L9(F ) = (−4, 3, 2) = R1(F ).

2) The cycle of F = (1, 8,−5) is F0 = (1, 8,−5) ∼ F1 =
(5, 2,−4) ∼ F2 = (4, 6,−3) ∼ F3 = (3, 6,−4) ∼ F4 =
(4, 2,−5) ∼ F5 = (5, 8,−1). The consecutive left and right
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neighbors of F are

L1(F ) = (−5, 8, 1) = R5(F )
L2(F ) = (4, 2,−5) = R4(F )
L3(F ) = (−3, 6, 4) = R3(F )
L4(F ) = (4, 6,−3) = R2(F )
L5(F ) = (−5, 2, 4) = R1(F ).

From above theorem, we can give the following result.

Corollary 2.14: Let Ri(F0) and Li(F0) denote the right
and left neighbors of F0, respectively. If l is odd, then

1) Li(F0) = τ(Rl−i(F0)) for 1 ≤ i ≤ l and Li(F0) =
τ(R3l−i(F0)) for l + 1 ≤ i ≤ 2l.

2) Li(F0) = χ(Ri+l−1(F0)) for 1 ≤ i ≤ l and Li(F0) =
χ(Ri−l−1(F0)) for l + 1 ≤ i ≤ 2l.

If l is even, then Li(F0) = χτ(Ri−1(F0)) for 1 ≤ i ≤ l−1.

Finally, we can give the following theorem.

Theorem 2.15: R(F0) and L(F0) denote the right and left
neighbors of F0, respectively. Then

R(L(F0)) = L(R(F0)) = F0.

Proof: Recall that the right neighbor of F = (a, b, c)
is the form R(F ) = (A,B,C), where A = c, b + B ≡ 0
(mod 2A),

√
Δ−2|A| < B <

√
Δ and B2−4AC = Δ. Also

R(F ) = [0;−1; 1;−δ](a, b, c) for b + B = 2cδ and L(F ) =
χτ(R(c, b, a)). For F = F0 = (a0, b0, c0), we get

L(F0) =
(

0 1
1 0

)
R(c0, b0, a0). (13)

Now we try to find R(c0, b0, a0). It is easily seen that

R(c0, b0, a0) = (a0,−b0 + 2a0δ0, c0 − b0δ0 + a0δ
2
0).

So (13) becomes

L(F0) = (c0 − b0δ0 + a0δ
2
0 ,−b0 + 2a0δ0, a0).

Note that −b0 + 2a0δ0 ≡ −b0(mod 2a). Also
√

Δ − 2|a0| <
−b0+2a0δ0 <

√
Δ. So if we take the right neighbor of L(F0),

then we get

R(L(F0)) = R(c0 − b0δ0 + a0δ
2
0 ,−b0 + 2a0δ0, a0)

= (a0, b0, c0)
= F0.

Similarly it can be proved that L(R(F0)) = F0.
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