WASET
	%0 Journal Article
	%A J. Schmidt and  O. Kornadt
	%D 2012
	%J International Journal of Structural and Construction Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 67, 2012
	%T Convection through Light Weight Timber Constructions with Mineral Wool
	%U https://publications.waset.org/pdf/2663
	%V 67
	%X The major part of light weight timber constructions
consists of insulation. Mineral wool is the most commonly used
insulation due to its cost efficiency and easy handling. The fiber
orientation and porosity of this insulation material enables flowthrough.
The air flow resistance is low. If leakage occurs in the
insulated bay section, the convective flow may cause energy losses
and infiltration of the exterior wall with moisture and particles. In
particular the infiltrated moisture may lead to thermal bridges and
growth of health endangering mould and mildew. In order to prevent
this problem, different numerical calculation models have been
developed. All models developed so far have a potential for
completion. The implementation of the flow-through properties of
mineral wool insulation may help to improve the existing models.
Assuming that the real pressure difference between interior and
exterior surface is larger than the prescribed pressure difference in the
standard test procedure for mineral wool ISO 9053 / EN 29053,
measurements were performed using the measurement setup for
research on convective moisture transfer “MSRCMT".
These measurements show, that structural inhomogeneities of
mineral wool effect the permeability only at higher pressure
differences, as applied in MSRCMT. Additional microscopic
investigations show, that the location of a leak within the
construction has a crucial influence on the air flow-through and the
infiltration rate. The results clearly indicate that the empirical values
for the acoustic resistance of mineral wool should not be used for the
calculation of convective transfer mechanisms.
	%P 425 - 432