WASET
	%0 Journal Article
	%A Farhad H. Mustafa and  Mohamad S. Jaafar  and  Asaad H. Ismail and  Ahamad F. Omar and  Zahra A. Timimi and Hend A. A. Houssein
	%D 2010
	%J International Journal of Biomedical and Biological Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 46, 2010
	%T Red Diode Laser in the Treatment of Epidermal Diseases in PDT
	%U https://publications.waset.org/pdf/2373
	%V 46
	%X The process of laser absorption in the skin during
laser irradiation was a critical point in medical application
treatments. Delivery the correct amount of laser light is a critical
element in photodynamic therapy (PDT). More amounts of laser
light able to affect tissues in the skin and small amount not able to
enhance PDT procedure in skin. The knowledge of the skin tone
laser dependent distribution of 635 nm radiation and its penetration
depth in skin is a very important precondition for the investigation of
advantage laser induced effect in (PDT) in epidermis diseases
(psoriasis). The aim of this work was to estimate an optimum effect
of diode laser (635 nm) on the treatment of epidermis diseases in
different color skin. Furthermore, it is to improve safety of laser in
PDT in epidermis diseases treatment. Advanced system analytical
program (ASAP) which is a new approach in investigating the PDT,
dependent on optical properties of different skin color was used in
present work. A two layered Realistic Skin Model (RSM); stratum
corneum and epidermal with red laser (635 nm, 10 mW) were used
for irradiative transfer to study fluence and absorbance in different
penetration for various human skin colors. Several skin tones very
fair, fair, light, medium and dark are used to irradiative transfer. This
investigation involved the principles of laser tissue interaction when
the skin optically injected by a red laser diode. The results
demonstrated that the power characteristic of a laser diode (635 nm)
can affect the treatment of epidermal disease in various color skins.
Power absorption of the various human skins were recorded and
analyzed in order to find the influence of the melanin in PDT
treatment in epidermal disease. A two layered RSM show that the
change in penetration depth in epidermal layer of the color skin has a
larger effect on the distribution of absorbed laser in the skin; this is
due to the variation of the melanin concentration for each color.
	%P 532 - 535