The Data Processing Electronics of the METIS Coronagraph aboard the ESA Solar Orbiter Mission
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32794
The Data Processing Electronics of the METIS Coronagraph aboard the ESA Solar Orbiter Mission

Authors: M. Focardi, M. Pancrazzi, M. Uslenghi, G. Nicolini, E. Magli, F. Landini, M. Romoli, A. Bemporad, E. Antonucci, S. Fineschi, G. Naletto, P. Nicolosi, D. Spadaro, V. Andretta

Abstract:

METIS is the Multi Element Telescope for Imaging and Spectroscopy, a Coronagraph aboard the European Space Agency-s Solar Orbiter Mission aimed at the observation of the solar corona via both VIS and UV/EUV narrow-band imaging and spectroscopy. METIS, with its multi-wavelength capabilities, will study in detail the physical processes responsible for the corona heating and the origin and properties of the slow and fast solar wind. METIS electronics will collect and process scientific data thanks to its detectors proximity electronics, the digital front-end subsystem electronics and the MPPU, the Main Power and Processing Unit, hosting a space-qualified processor, memories and some rad-hard FPGAs acting as digital controllers.This paper reports on the overall METIS electronics architecture and data processing capabilities conceived to address all the scientific issues as a trade-off solution between requirements and allocated resources, just before the Preliminary Design Review as an ESA milestone in April 2012.

Keywords: Solar Coronagraph, Data Processing Electronics, VIS and UV/EUV Detectors, LEON Processor, Rad-hard FPGAs

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1056537

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2506

References:


[1] F. Bernhard et al., "10 years of SOHO", ESA Bulletin, No. 126, p. 24 -32, May 2006.
[2] Tarbell, Theodore D. et al., "Fundamental Solar Physics Results from Hinode and the Solar Dynamics Obervatory", Bulletin of the American Astronomical Society, Vol. 41, p.869, May 2010.
[3] M. L. Kaiser et al.," The STEREO Mission: An Introduction. Space Science Reviews", 136:5, April 2008.
[4] ESA/SRE, "Solar Orbiter, Assessment study report", December 2009.
[5] S. Fineschi et al, "Ultraviolet and visible-light coronagraphic imager (UVCI) for HERSCHEL (helium resonance scattering in corona and heliosphere)", Proc. SPIE, Vol. 4853, 2003.
[6] G. Naletto et al, "METIS, the Multi Element Telescope for Imaging and Spectroscopy for the Solar Orbiter mission", proc. of ICSO Conference, Oct. 2010.
[7] S. Fineschi, "Inverted-COR: Inverted-Occultation Coronagraph for Solar Orbiter", Technical Note n. 119, Osservatorio Astronomico di Torino,(http://www.oato.inaf.it/biblioteca/it/servizi/TechRep119_Fineschi.pdf), May 2009.
[8] S. Fineschi, "Novel Optical Designs for Space Coronagraphs: Inverted Occulters and Lyot-stops", proc. of ICSO Conference, Oct. 2010.
[9] M. Pancrazzi, M. Focardi et al., "The Solar Orbiter METIS Coronagraph data signal processing chain", Proc. of SPIE Vol. 8167 81672C-1, 2011.
[10] Y. Bai, "Teledyne Imaging Sensors: Silicon CMOS imaging technologies for x-ray, UV, visible and near infrared", SPIE Conference, 7021-01, 2008.
[11] M. Loose et al, "SIDECAR ASIC -control electronic on a chip", Scientific Detectors for Astronomy 699-706, 2005.
[12] Eberhardt E.H., " Gain model for microchannel plates" - Appl.Opt. 18 (1979) 1418.
[13] Atmel, "AT697E: Rad-Hard 32 bit SPARC V8 Processor", Atmel datasheet.
[14] ESA-ESTEC, ECSS-E-70-41A standard.
[15] A. Bemporad, "Simulation of H Lyman-╬▒ images for the METIS coronagraph", Technical Note, METISOATO-TNO-002, 2010.
[16] V. Andretta et al, "Coronal Radiances and Modelling", METIS-OACTTNO- 004, Technical Notes, 2011.
[17] S. Fineschi, et al, "KPol: liquid crystal polarimeter for K-corona observations from the SCORE coronagraph", Proc. SPIE, Vol. 5901, 389-399, 2005.