
 

 

  
Abstract—Dengue virus is transmitted from person to person 

through the biting of infected Aedes Aegypti mosquitoes. DEN-1, 
DEN-2, DEN-3 and DEN-4 are four serotypes of this virus. Infection 
with one of these four serotypes apparently produces permanent 
immunity to it, but only temporary cross immunity to the others. The 
length of time during incubation of dengue virus in human and 
mosquito are considered in this study. The dengue patients are 
classified into infected and infectious classes. The infectious human 
can transmit dengue virus to susceptible mosquitoes but infected 
human can not. The transmission model of this disease is formulated. 
The human population is divided into susceptible, infected, infectious 
and recovered classes. The mosquito population is separated into 
susceptible, infected and infectious classes. Only infectious 
mosquitoes can transmit dengue virus to the susceptible human. We 
analyze this model by using dynamical analysis method. The 
threshold condition is discussed to reduce the outbreak of this 
disease. 

 
Keywords—Transmission model, intrinsic incubation period, 

extrinsic incubation period, basic reproductive number, equilibrium 
states, local stability.  

I. INTRODUCTION 
N recent years, dengue disease has become a major public 
health concern [1]. This disease is found in tropical and 

sub-tropical regions around the world. More than 100 
countries in Africa, the Americas, the Eastern Mediterranean, 
South-east Asia and the Western Pacific are affected due to 
this disease. Only nine countries had experienced dengue 
epidemics before 1970 but a number had increased more than 
four-fold by 1995. In 2001, there were more than 609,000 
patients due to dengue disease. This was greater than double 
the number of dengue patients which were recorded in the 
same region in 1995. Two-fifth of the world’s population is 
now at risk from dengue disease. WHO currently estimates 
there may be 50 million cases of dengue disease worldwide 
per year. Attack rates among susceptible are 40-50% may be 
reach 80-90% during epidemics of this disease. The person 
who be infected with this disease are classified into 3 forms, 
Dengue Fever (DF), Dengue hemorrhagic fever (DHF) and 
Dengue shock syndrome (DSS). These three forms depend on 
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the symptom of each patient. DHF and DSS are severe forms 
of this disease. The transmission cycle of dengue virus by the 
mosquito Aedes aegypti begins with a dengue infectious 
person. Most of these people will have virus circulating in the 
blood (viremia) that lasts for about four to seven days [2,3]. 
During this viremic period, an uninfected female Aedes 
aegypti mosquito bites the person and ingests blood that 
contains dengue virus. Although there is some evidence of 
transovarial transmission of dengue virus in Aedes aegypti, 
usually mosquitoes are only infected by biting a viremic 
person. Then within the mosquito, the viruses replicate during 
an extrinsic incubation period of eight to twelve days. After an 
extrinsic incubation period of the mosquito, its salivary glands 
become infected and the virus is transmitted when the 
infectious mosquito bites and injects the salivary fluid into the 
wound of the human. The mosquito can bite a susceptible 
person and could transmit the virus to him or her, as well as to 
every other susceptible persons, the mosquito bites for the rest 
of its lifetime. The virus then replicates in the person during 
an intrinsic incubation period [4].   

The original model used by Esteva and Vargas [5] did not 
include the intrinsic and extrinsic incubation periods of 
dengue virus in human and vector populations. Their model 
considered the transmission between the human and vector 
populations. The human population is separated into 
susceptible, infectious and recovered classes. The vector 
population is divided into susceptible and infectious classes.  
In our study, the length of time during the dengue virus 
circulating in the blood of human and vector populations are 
considered. The infected human and infected vector classes 
are included into the model. There are the difference between 
infected and infectious classes for the human and vector 
populations. The infected classes can not transmit dengue 
virus until they become to be infectious class.   

II. MATHEMATICAL MODEL 

Let )(tS h  be the number of susceptible human population 
at time t, 
         )(tX h  be the number of infected  human population at 
time t, 
       )(tI h  be the number of infectious human population at 
time t,          
       )(tR h  be the  number of recovered human population at 
time t,    
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       )(tS v  be the number of susceptible vector population at 
time t, 
       )(tX v  be the number of infected vector population at 
time t, 
        )(tI v  be the  number of infectious vector population at 
time t, 

The dynamical system for human and vector populations 
can be described by the following equations:                     

hhvhhTh SISNS
dt
d μβλ −−=                                                                            

hhhhvhhh XXISX
dt
d μαβ −−=                                                                                             

hhhhhh IIrXI
dt
d μα −−=                      

hhhh RIrR
dt
d μ−=                                         (1)                   

vvvhvv SSICS
dt
d μβ −−=  

vvvvvhvv XXSIX
dt
d μαβ −−=  

vvvvv IXI
dt
d μα −=  

with the conditions  

hhhhT RIXSN +++=     and     vvvv IXSN ++=  
where              

TN is the total number of  human population,  

λ   is the birth rate of the human population,  

hβ  is the infectious rate of dengue virus from vector to 
human population, 

hα  is the rate at which the infected human change to be 
infectious human population,  

vβ  is the infectious rate of dengue virus from human to 
vector population, 

hμ  is the death rate of human population, 

 r    is the recovery rate of human population, 

C    is the constant recruitment rate of the vector population, 
vα  is the rate at which the infected vector change to be 

infectious vector population,              

vμ  is the death rate of vector population. 

The total human and vector populations are constant, thus 
the rate of change for both populations equal to zero. Then           

0=TN
dt
d    and   0=VN

dt
d .                       (2) 

From (2), we obtain  hμλ =  for human population and 

v
V

CN
μ

=  for vector population. 

Normalizing (1) by letting  

T

h
N
SS = , 

T

h
N
XX = ,

T

h

N
II = , 

T

h

N
RR = ,

v

v
v N

SS = ,
v

v
v N

XX = ,
v

v
v N

II = , 

then the reduced equations become                            

SCSI
dt
dS

hvvhh μμβμ −−= )/(  

XXCSI
dt
dX

hhvvh μαμβ −−= )/(            

IrIX
dt
dI

hh μα −−=                                                             (3)                  

vvvvvvTv
v XXIXIN

dt
dX

μαβ −−−−= )1(          

vvvv
v IX

dt
dI

μα −=                               

with the conditions     S + X + I + R  =  1            
and         1=++ vvv IXS . 

III. ANALYSIS OF THE MODEL 

A. Analytical Results  
Finding equilibrium states by setting right hand side of all 

equations in (3) equal to zero, then we obtain two equilibrium 
states: 
i)  Disease free equilibrium state:   )0,0,0,0,1(=oV             (4) 
ii)  Endemic equilibrium state:  

),,,,( *****
1 vv IXIXSV =                             (5) 

where  
))((

))((
  

2
*

hvvvhvh

vhhvhvv MN
S

γαμαμγα
μμμγαμα

++
++

= , 

           
))((

)1)((
  0

2
*

hvvvhvh

vvvh EM
X

γαμαμγα
μαμμ

++
−+

= , 

                   
))((

)1)((
  0*

hvvvhv

vvvh E
I

γαμαμγ
μαμμ

++

−+
= ,              

                 
)(

)1(
  2

0
23

*

vhhvhhv

vh
v

MN
EMN

X
μμμγαγα

μμ

+

−
=                   

                 
)(

)1(
  2

0
3

*

vhhvhh

vh
v

MN
EMN

I
μμμγαγ

μμ

+

−
=  

and    

),/( vhh C μβγ = ,Tvv Nβγ =
h

h r
M

μ
μ +

= ,
h

hhN
μ

μα +
=   

and      

)())((0
vvvhhh

vhvh
r

E
μαμμαμ

γγαα
+++

=  

The local stability for each equilibrium state can be 
determined by the sign of all eigenvalues. If all eigenvalues 
have negative real part, then that equilibrium state is local 
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stability. We find eigenvalues for each equilibrium state by 
setting           

                                   0det =− ξI)(J                                 (6) 
where   J   is   the Jacobian matrix of the right hand side of  
(3) calculated at the equilibrium state. 
For the equilibrium state oV , the characteristic equation is                                                         

0))(( 01
2

2
3

3
4 =+++++ wwwwh ξξξξμξ           (7) 

where 
vhv NMw μμα 2)(3 +++=  

))(()(2 22
2 vhvvvhh NMNMMNw μμαμμμμ ++++++=  

))(((1 vhvh NMMNw μμαμ ++=  
)))(2( vhv NMMN μμμ +++                                                (8) 

))(1( 0
2

0 vvvh EMNw μαμμ +−=                                                                                               
There are  five eigenvalues corresponding to (7). We denote 

these five eigenvalues by 4321 ,,, ξξξξ  and 5ξ . hμξ −=1  
has negative real part. The other four eigenvalues can be 
obtained by solving 

001
2

2
3

3
4 =++++ wwww ξξξξ . 

These four eigenvalues have negative real part if they 
satisfy the Routh-Hurwitz criteria [6,7] :                                                                   

                                      03 >w                                         (9) 

                                      01 >w                                       (10) 

                                      00 >w                                       (11) 

                           0
2
3

2
1321 wwwwww +>                    (12) 

     It can be easily seen that coefficients 23  , ww and 0w  
satisfy (9), (10) and (11) when 1 0 <E . Evaluating    

))(()(
)( 0

2
3

2
1321

vhvvhh MMNM
wwwwww

μμαμμμ ++++=
+−                                       

 )2)((

 )2)()((
2

vhvvhvh

vvvhvvh

NM

NN

μμαγγαα

μαμμαμμ

++++

++++
 

)( 0
2
3

2
1321 wwwwww +−  is always positive. Therefore the 

disease free equilibrium state is local stability for 1 0 <E . 

For the equilibrium state 1V , the characteristic equation is                              

             001
2

2
3

3
4

4
5 =+++++ uuuuu ξξξξξ                (13) 

where 

vhhvh

vh

vhhhv

vvvh

vhv

MN
MNEE

NMu
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μμ

μμμγα
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There are five eigenvalues corresponding to (13). We 
denote these five eigenvalues by 4321 ,,, ξξξξ  and 5ξ . 
These four eigenvalues have negative real parts if they satisfy 
the Routh-Hurwitz criteria, that is [6,7]         

                ;0>iu      for  i = 1, 2, 3, 4, 5                          (14)                                         

            01
2
4

2
2432 >−− uuuuuu                               (15)  

0)())(( 2
04

2
23401

2
4

2
2234041 >−−−−−− uuuuuuuuuuuuuuu   (16) 

                                                                                       
      It can be easily seen that the coefficients iu  for i = 1, 2, 3, 
4, 5 are satisfied (14)  for 0E > 1. From our evaluations, we 
found that conditions (15) and (16) are satisfied for   0E > 1 
also.  
     Thus, the endemic equilibrium state is local stability for 

1 0 >E . 

B. Numerical Results  
In this study, we are interested in the incubation period of 

dengue virus in human and vector populations. After each 
susceptible person is bitten by infectious vector, that person 
can not transmit dengue virus immediately. We call this 
person in this period as an infected human. Intrinsic 
incubation period of dengue virus in human is about 5 days 
[2]. When the susceptible vector bites the infectious person, it 
will be infected vector before it become to be infectious 
vector. Extrinsic incubation period of dengue virus in vector 
population is about 10 days [2]. The susceptible person is the 
person who has no immunity and not infected. The recovered 
person is the person who has immunity after infected with 
dengue virus. The parameters are determined by real life 
observations. 0.0000391hμ =  corresponds to the real life 

expectancy of 70 years for human. hβ and vβ  are arbitrarily 
chosen. hα = 1/5 corresponds to the extrinsic incubation 
period of 5 days. vα = 1/10 corresponds to the intrinsic 
incubation period of 10 days. r = 1/14 corresponds to the 
length of 14 days for illness. vμ  = 1/14 corresponds to the 
mean life of 14 days for vector population. C is the constant 
recruitment rate of vector population; this parameter is 
arbitrarily chosen.  

 

              
Fig. 1 Time series of susceptible human, infected human, infectious 
human, infected vector and infectious vector proportions. The values 

of the parameters are 0.0000391hμ = , 0.00005hβ = , 1
5hα = , 

1
14

r =  , TN = 5,000, 0.00008vβ = , 1
14vμ = , 1

10vα = , C = 

30, 0E =  0.95 
  

            
Fig. 2 Time series of susceptible human, infected human, infectious 
human, infected vector and infectious vector proportions. The values 

of the parameters are 0.0000391hμ = ,  0.00005hβ = , 1
5hα = , 

1
14

r =  , TN = 5,000, 0.00008vβ = , 1
14vμ = , 1

10vα = , C = 

300, 0E =  9.5 
 
Fig. 1 and Fig. 2 show time development of human and 

vector classes. Fig. 1 shows numerical solutions for 0E < 1. 

Fig. 2 shows numerical solutions for 0E > 1. The solutions 
converge to the disease free equilibrium state as shown in Fig. 
1. Fig. 2, the solutions oscillate to the endemic equilibrium 
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state (0.104486, 0.000175039, 0.00048984, 0.00113983, 
0.00159577).  

IV. DISCUSSION AND CONCLUSION 
We formulate the transmission model of dengue disease by 

considering the incubation period of dengue virus in human 
and vector populations. The basic reproductive number is  

0E E′ = where          

)())((0
vvvhhh

vhvh
r

E
μαμμαμ

γγαα
+++

=                                        (17)                                            

E′  represents the number of secondary cases that one case 
can produce if introduced into a susceptible person. 0E  is the 
threshold condition. The threshold condition and the stability 
of the solutions are shown in Fig. 3. 
 

 
Fig. 3 Bifurcation diagrams of system (3), demonstrate the 

equilibrium solutions of susceptible, infected, infectious human and 
infected, infectious vector population respectively. — represents the 

stable solutions and  ---  represents the unstable solutions. For oE < 

1, oV  will be stable. For oE > 1,  1V   will be stable 

 
    The basic reproductive number for the endemic equilibrium 
state will prevail if and only if the basic reproductive number 
exceeds one. The disease free equilibrium state exists and is 
local stability if the basic reproductive number is less than one 
and become unstable when the basic reproductive number is 
more than one. The numerical simulations are used to confirm 

results in the previous section. The behavior of solutions can 
be described in terms of the basic reproductive number; if this 
number is less than or equal to one, thus an infective replace 
itself with less than one new infective, the disease die out. 
Furthermore, the susceptible fraction approaches one since 
everyone is susceptible when the disease has vanished. If the 
basic reproductive number is greater than one, the normalized 
susceptible human decreases. The normalized infected human, 
infectious human populations increase. These subsequent 
behaviors occur because there are enough susceptible human 
to be infected from infectious vector.  
    The basic reproductive numbers are used for controlling the 
diseases [8, 9, 10,11]. The human population should protect 
themselves from infected with dengue virus by using bed-nets 
to reduce the infection rate of the vector population. This will 
cause the basic reproductive number to decrease below one. 
Consequently, we can reduce the outbreak of the disease.  
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