WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/1795,
	  title     = {3D Dense Correspondence for 3D Dense Morphable Face Shape Model},
	  author    = {Tae in Seol and  Sun-Tae Chung and  Seongwon Cho},
	  country	= {},
	  institution	= {},
	  abstract     = {Realistic 3D face model is desired in various
applications such as face recognition, games, avatars, animations, and
etc. Construction of 3D face model is composed of 1) building a face
shape model and 2) rendering the face shape model. Thus, building a
realistic 3D face shape model is an essential step for realistic 3D face
model. Recently, 3D morphable model is successfully introduced to
deal with the various human face shapes. 3D dense correspondence
problem should be precedently resolved for constructing a realistic 3D
dense morphable face shape model. Several approaches to 3D dense
correspondence problem in 3D face modeling have been proposed
previously, and among them optical flow based algorithms and TPS
(Thin Plate Spline) based algorithms are representative. Optical flow
based algorithms require texture information of faces, which is
sensitive to variation of illumination. In TPS based algorithms
proposed so far, TPS process is performed on the 2D projection
representation in cylindrical coordinates of the 3D face data, not
directly on the 3D face data and thus errors due to distortion in data
during 2D TPS process may be inevitable.
In this paper, we propose a new 3D dense correspondence algorithm
for 3D dense morphable face shape modeling. The proposed algorithm
does not need texture information and applies TPS directly on 3D face
data. Through construction procedures, it is observed that the proposed
algorithm constructs realistic 3D face morphable model reliably and
fast.},
	    journal   = {International Journal of Computer and Information Engineering},
	  volume    = {2},
	  number    = {5},
	  year      = {2008},
	  pages     = {1402 - 1406},
	  ee        = {https://publications.waset.org/pdf/1795},
	  url   	= {https://publications.waset.org/vol/17},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 17, 2008},
	}