Bernstein-Galerkin Approach for Perturbed Constant-Coefficient Differential Equations, One-Dimensional Analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32769
Bernstein-Galerkin Approach for Perturbed Constant-Coefficient Differential Equations, One-Dimensional Analysis

Authors: Diego Garijo

Abstract:

A numerical approach for solving constant-coefficient differential equations whose solutions exhibit boundary layer structure is built by inserting Bernstein Partition of Unity into Galerkin variational weak form. Due to the reproduction capability of Bernstein basis, such implementation shows excellent accuracy at boundaries and is able to capture sharp gradients of the field variable by p-refinement using regular distributions of equi-spaced evaluation points. The approximation is subjected to convergence experimentation and a procedure to assemble the discrete equations without a background integration mesh is proposed.

Keywords: Bernstein polynomials, Galerkin, differential equation, boundary layer.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1088738

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793

References:


[1] G.G. Lorentz, Bernstein polynomials, 2nd ed. Chelsea Publishing Company, 1986.
[2] G.R. Liu, Mesh Free Methods. Moving beyond the Finite Element Method. CRC Press, 2003.
[3] T.P. Fries, H.G. Matthies, Classification and overview of meshfree methods. (Informatikbericht-Nr. 2003-03). Brunswick: Technische Universit¨at Braunschweig, 2004.
[4] E.H. Doha, A.H. Bhrawy, M.A. Saker, On the Derivatives of Bernstein Polynomials: An Application for the Solution of High Even-Order Differential Equations. Hindawi Publishing Corporation Boundary Value Problems, 2011.
[5] O´ .F Valencia, F.J. Go´mez-Escalonilla, D. Garijo, J. Lo´pez, Bernstein polynomials in EFGM. Proc. IMechE Part C: J. Mechanical Engineering Science, 2011, 225(8), 1808-1815.
[6] M.I. Bhatti, P. Bracken, Solutions of differential equations in a Bernstein polynomial basis. Journal of Computational and Applied Mathematics, 2007, 205, 272-280.
[7] N. Mirkov, B. Rasuo, A Bernstein Polynomial Collocation Method for the Solution of Elliptic Boundary Value Problems. Cornell University Library, 2012.
[8] J. Liu, Z. Zheng, Q. Xu, Bernstein-Polynomials-Based Highly Accurate Methods for One-Dimensional Interface Problems. Journal of Applied Mathematics, Volume 2012.
[9] P. Lancaster, K. Salkauskas, Surfaces generated by moving least squares methods Math. Comput., 1981, 37, 141-158.
[10] D. Garijo, O´ .F Valencia, F.J. Go´mez-Escalonilla, J. Lo´pez, Bernstein-Galerkin approach in elastostatics. Proc. IMechE Part C: J. Mechanical Engineering Science, Published online April 24, 2013, doi: 10.1177/0954406213486733.
[11] D. Gottlieb, S.A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications. Society for Industrial and Applied Mathematics. Philadelphia, Pennsylvania, 1977.
[12] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods in Fluid Dynamics, 2nd ed. Springer Series in Computational Physics. Springer-Verlag, 1988.
[13] T. Belytschko, Y.Y. Lu, L. Gu, Element-free Galerkin methods. Internat. J. Numer. Methods Engrg., 1994, 37, 229-256.
[14] J. Dolbow, T. Belytschko, An Introduction to Programming the Meshless Element Free Galerkin Method. Arch. Comput. Meth. Eng., 1998, 5(3), 207-241.
[15] T. Ohkami, E. Toyoshima, S. Koyama, Element Free Analysis on a Mapped Plane. Proceedings of the Seventh International Conference on Computational Structures Technology, In B.H.V. Topping, C.A. Mota Soares, (Editors), Civil-Comp Press, Stirlingshire, UK, Paper 126, 2004.
[16] Y. Suetake, Element-Free Method Based on Lagrange Polynomial. J. Eng. Mech., 2002, 128(2), 231-239.
[17] O.C. Zienkiewicz, R.L. Taylor, The finite element method. The basis., 5th ed. Butterworth-Heinemann, 2000.
[18] K.E. Atkinson, An introduction to numerical analysis, 2nd ed. New York: John Wiley & Sons, Inc., 1988.
[19] C.M. Bender, S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill Book Company, 1978
[20] M.Z. Spivey, Combinatorial Sums and Finite Differences. Discrete Math., 2007, 307, 3130-3146.
[21] K.W. Morton, D.F. Mayers, Numerical Solution of Partial Differential Equations, 2nd ed. Cambridge University Press, 2005.
[22] J.J.H. Miller, E. O’Riordan, G.I. Shishkin, Fitted numerical methods for singular perturbation problems, World Scientific, Singapore, 1996.
[23] C.J. Budd, G.P. Koomullil, A.M. Stuart, On the solution of convectiondiffusion boundary value problems using equidistributed grids SIAM J. Sci. Comput., 1998, 20(2), 591-618.
[24] P. Knobloch, Numerical solution of convection-diffusion equations using upwinding techniques satisfying the discrete maximum principle. Proceedings of the Czech-Japanese Seminar in Applied Mathematics 2005, Kuju Training Center, Oita, Japan, September 15-18, 2005, 69-76.
[25] H.G. Roos, M. Stynes, L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations, Springer, 2008.
[26] Y.N. Reddy, GBSL. Soujanya, K. Phaneendra, Numerical Integration Method for Singularly Perturbed Delay Differential Equations, International Journal of Applied Science and Engineering, 2012, 10(3), 249-261.
[27] R.S. Johnson, Singular Perturbation Theory, Mathematical and Analytical Techniques with Applications to Engineering, Springer, 2005.
[28] E.J. Hinch, Perturbation Methods, Cambridge University Press, 1991.
[29] F. Verhulst, Methods and Applications of Singular Perturbations, Springer, 2005.