Influences of Si and C- Doping on the Al-27 and N-14 Quardrupole Coupling Constants in AlN Nanotubes: A DFT Study
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32804
Influences of Si and C- Doping on the Al-27 and N-14 Quardrupole Coupling Constants in AlN Nanotubes: A DFT Study

Authors: A.Seif, H.Aghaie, K.Majlesi

Abstract:

A computational study at the level density functional theory (DFT) was carried out to investigate the influences of Si and C-doping on the 14N and 27Al quadrupole coupling constant in the (10, 0) zigzag single ? walled Aluminum-Nitride nanotube (AlNNT). To this aim, a 1.16nm, length of AlNNT consisting of 40 Al atoms and 40 N atoms were selected where the end atoms are capped by hydrogen atom. To follow the purpose, three Si atoms and three C atoms were doped instead of three Al atoms and three N atoms as a central ring in the surface of the Si and C-doped AlNNT. At first both of systems optimized at the level of BLYP method and 6-31G (d) basis set and after that, the NQR parameters were calculated at the level BLYP method and 6-311+G** basis set in two optimized forms. The calculate CQ values for both optimized AlNNT systems, raw and Si and C-doped, reveal different electronic environments in the mentioned systems. It was also demonstrated that the end nuclei have the largest CQ values in both considered AlNNT systems. All the calculations were carried out using Gaussian 98 package of program.

Keywords: DFT, Quadrupole Coupling Constant, Si and CDoping, Single-Walled AlN nanotubes.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1055743

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507

References:


[1] Kroto, H. W.; Health, J.R.; O Brien, S.C.:Curl, R. F.; Smalley, R. E. Nature 1985. 318,162-163.
[2] S. Iijima, Nature 354 (1991) 2148.
[3] A. Rubio, J. L. Corkill, M.L. Cohen,phys.Rev. B 49 (1994) 5081.
[4] J. Cuming, A. Zettl, Chem.phys. Lett.316 (2000) 211.
[5] M.W.Zhao,Y.Y.Xia , D.J. Zhang, L.M.Mei, Phys.Rev. B 68 (2003) 235415
[6] S.M.Lee, Y.H.Lee,Y.G.Hwang J.elsner,D. Porezag, Th. Frauenheim,phys.Rev.B60 (1999) 7788.
[7] Mingwen Zhao, Yueyuan Xia, Xiangdong Liu, Zhenyu Tan Boda Huang, Chen Song, and Liangmo Mei j.Phys.Chem.B 2006, 110 8764- 8768
[8] D. Kang, V. V. Zhimov, R.C. Sanwald, J. J. Hren, J. J. Cuomo.J.vno, Sel, Technol. B 19 (2001) 50.
[9] J.W. Mintmire, B.J. Dunlap. C.T. White, Phys. Rev.Lett.68 (1992) 1579.
[10] Adrian p. Sutton, Electronic Structure of Materials, Oxford University press, New York 1996.
[11] I. Vurgaftman, J.R. Meyer, J.Appl. Phys. 94 (6) (2003) 3575.
[12] S. Hou, j. zhang Z. Shen,X. Zhao, and Z. Xue, physical E 27,45(2005).
[13] D. Zhang and R. Q. Zhang , chem.. phys. Lett.371, 426(2003).
[14] T. P. Das and E.L. Han, Nuclear quadrupole Resonance Spectroscopy, Academic Press, New Yourk 1958.
[15] W. C. Bailey, chem.phys.252, 57(2000).
[16] R. K. Harris Pure and Applied Science Chemistry 73, 1795-1818
[17] George P. Lithoxoos and Jannis SamiosNano Lett, Vol 6. No 8. 1581- 1583, (2006)
[18] M. J. Frisch, et al., Gaussian 98 Revision A.7,Gaussian, Inc., Pittsburgh, PA 1998
[19] Xin Chen, Jing Ma, Zheng Hu,Qiang Wu,and Yi Cen J.AM. Chem. Soc. 2005, 127, 7982-7983.
[20] P. pyykkö, Mol. Phys.99, 1617 (2001).