WASET
	%0 Journal Article
	%A N. Siva Shanmugam and  G. Buvanashekaran and  K. Sankaranarayanasamy
	%D 2013
	%J International Journal of Mechanical and Mechatronics Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 79, 2013
	%T Some Studies on Temperature Distribution Modeling of Laser Butt Welding of AISI 304 Stainless Steel Sheets
	%U https://publications.waset.org/pdf/16444
	%V 79
	%X In this research work, investigations are carried out on
Continuous Wave (CW) Nd:YAG laser welding system after
preliminary experimentation to understand the influencing parameters
associated with laser welding of AISI 304. The experimental
procedure involves a series of laser welding trials on AISI 304
stainless steel sheets with various combinations of process parameters
like beam power, beam incident angle and beam incident angle. An
industrial 2 kW CW Nd:YAG laser system, available at Welding
Research Institute (WRI), BHEL Tiruchirappalli, is used for
conducting the welding trials for this research. After proper tuning of
laser beam, laser welding experiments are conducted on AISI 304
grade sheets to evaluate the influence of various input parameters on
weld bead geometry i.e. bead width (BW) and depth of penetration
(DOP). From the laser welding results, it is noticed that the beam
power and welding speed are the two influencing parameters on
depth and width of the bead. Three dimensional finite element
simulation of high density heat source have been performed for laser
welding technique using finite element code ANSYS for predicting
the temperature profile of laser beam heat source on AISI 304
stainless steel sheets. The temperature dependent material properties
for AISI 304 stainless steel are taken into account in the simulation,
which has a great influence in computing the temperature profiles.
The latent heat of fusion is considered by the thermal enthalpy of
material for calculation of phase transition problem. A Gaussian
distribution of heat flux using a moving heat source with a conical
shape is used for analyzing the temperature profiles. Experimental
and simulated values for weld bead profiles are analyzed for stainless
steel material for different beam power, welding speed and beam
incident angle. The results obtained from the simulation are
compared with those from the experimental data and it is observed
that the results of numerical analysis (FEM) are in good agreement
with experimental results, with an overall percentage of error
estimated to be within ±6%.

	%P 1532 - 1541