Numerical Optimization of Pin-Fin Heat Sink with Forced Cooling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Numerical Optimization of Pin-Fin Heat Sink with Forced Cooling

Authors: Y. T. Yang, H. S. Peng, H. T. Hsu

Abstract:

This study presents the numerical simulation of optimum pin-fin heat sink with air impinging cooling by using Taguchi method. 9 L ( 4 3 ) orthogonal array is selected as a plan for the four design-parameters with three levels. The governing equations are discretized by using the control-volume-based-finite-difference method with a power-law scheme on the non-uniform staggered grid. We solved the coupling of the velocity and the pressure terms of momentum equations using SIMPLEC algorithm. We employ the k −ε two-equations turbulence model to describe the turbulent behavior. The parameters studied include fin height H (35mm-45mm), inter-fin spacing a , b , and c (2 mm-6.4 mm), and Reynolds number ( Re = 10000- 25000). The objective of this study is to examine the effects of the fin spacings and fin height on the thermal resistance and to find the optimum group by using the Taguchi method. We found that the fin spacings from the center to the edge of the heat sink gradually extended, and the longer the fin’s height the better the results. The optimum group is 3 1 2 3 H a b c . In addition, the effects of parameters are ranked by importance as a , H , c , and b .

Keywords: Heat sink, Optimum, Electronics cooling, CFD.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1087203

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3659

References:


[1] R. F. B. Haq, K. Akintunde, and S. D. Probert, “Thermal Performance of a Pin-Fin Assembly,” Int. J. Heat Fluid Flow, vol. 16, pp. 50-55, 1995.
[2] G. Ledezma, A. M. Morega, and A. Bejan, “Optimal Spacing between Pin Fins with Impinging Flow,” J. Heat Transfer, vol. 118, pp. 570-577, 1996.
[3] G. Ledezma, and A. Bejan, “Heat Sinks with Sloped Plate Fins in Natural and Forced Convection,” Int. J. Heat Mass Transfer, vol. 39, no. 9, pp. 1773-1783, 1996.
[4] H. Y. Li, S. M Chao, and G. L. Tsai, “Thermal Performance Measurement of Heat Sinks with Confined Impinging Jet by Infrared Thermography,” Int. J. Heat Mass Transfer, vol. 48, pp. 5386-5394, 2005.
[5] H. Y. Li, and K. Y. Chen, “Thermal Performance of Plate-Fin Heat Sinks under Confined Impinging Jet Conditions,” Int. J. Heat Mass Transfer, vol. 50, pp. 1963-1970, 2007.
[6] H. Y. Li, and K. Y. Chen, “Thermal-Fluid Characteristics of Pin-Fin Heat Sinks Cooled by Impinging Jet,” J. Enhanced Heat Transfer, vol. 12, no. 2, pp. 189-201, 2005.
[7] L. A. Brignoni, and S. V. Garimella, “Experimental Optimization of Confined Air Jet Impingement on a Pin Fin Heat Sink,” IEEE Trans. Compon. Packaging Technol., vol. 22, no. 3, pp. 399-404, 1999.
[8] J. G. Maveety, and J. F. Hendricks, “A Heat Sink Performance Study Considering Material, Geometry, Reynolds Number with Air Impingement,” J. Electron. Packag., vol. 121, pp. 156-161, 1999.
[9] J. G. Maveety, and H. H. Jung, “Design of an Optimal Pin-Fin Heat Sink with Air Impingement Cooling,” Int. Commun. Heat Mass Transfer, vol. 27, no. 2, pp. 229-240, 2000.
[10] H. A. El-Sheikh, and S. V. Garimella, “Enhancement of Air Jet Impinging Heat Transfer Using Pin-Fin Heat Sinks,” IEEE Trans. Compon. Packaging Technol., vol. 23, no. 2, pp. 300-308, 2000.
[11] C. J. Kobus, and T. Oshio, “Development of a Theoretical Model for Predicting the Thermal Performance Characteristics of a Vertical Pin-fin Array Heat Sink under Combined Forced and Natural Convection, ”Int. J. Heat Mass Transfer, vol. 48, pp. 1053-1063, 2005.
[12] C. J. Kobus, and T. Oshio, “Predicting the Thermal Performance Characteristics of Staggered Vertical Pin Fin Array Heat Sinks under Combined Mode Radiation and Mixed Convection with Impinging Flow,” Int. J. Heat Mass Transfer, vol. 48, pp. 2684-2696, 2005.
[13] J. S. Issa, and A. Ortega, “Experimental Measurements of the Flow and Heat Transfer of a Square Jet Impinging on an Array of Square Pin Fins,” J. Electron. Packag., vol. 128, pp. 61-70, 2006.
[14] Z. Duan, and Y. S. Muzychka, “Experimental Investigation of Heat Transfer in Impingement Air Cooled Plate Fin Heat Sinks,” J. Electron. Packag., vol. 128, pp. 412-418, 2006.
[15] E. Sansoucy, P. H. Oosthuizen, and G. R. Ahmed, “An Experimental Study of the Enhancement of Air-Cooling Limits for Telecom/Datacom Heat Sink Applications Using an Impinging Air Jet,” J. Electron. Packag., vol. 128, pp. 166-171, 2006.
[16] J. R. Culham, and Y. S. Muzychka, “Optimization of Plate Fin Heat Sinks Using Entropy Generation Minimization,” IEEE Trans. Compon. Packaging Technol., vol. 24, no. 2, pp. 159-165, 2001.
[17] W. W. Lin, and D. J. Lee, “Second-law Analysis on a Flat Plate-Fin Array under Crossflow,” Int. Commun. Heat Mass Transfer, vol. 27, no. 2, pp. 179-190, 2000.
[18] S. Z. Shuja, S. M. Zubair, and M. S. Khan, “Thermoeconomic Design and Analysis of Constant Cross-sectional Area Fins,” Heat Mass Transfer, vol. 34, pp. 357-364, 1999.
[19] W. A. Khan, J. R. Culham, and M. M. Yovanovich, “Optimization of Pin-fin Heat Sinks Using Entropy Generation Minimization,” ITHERM, August, vol. 1, pp. 259-267, 2004.
[20] K. Ogiso, “Assessment of Overall Cooling Performance in Thermal Design of Electronics Based on Thermodynamics,” J. Heat Transfer, vol. 123, pp. 999-1005, 2001.
[21] Y. T. Yang, and H. S. Peng, “Numerical Study of Pin-Fin Heat Sink with Un-uniform Fin Height Design,” Int. J. Heat Mass Transfer, vol. 51, no. 19-20, pp. 4788-4796, 2008.
[22] Y. T. Yang, and H. S. Peng, “Numerical Study of the Heat Sink with Un-uniform Fin Width Designs,” Int. J. Heat Mass Transfer, vol. 52, no. 15-16, pp. 3473-3480, 2009.
[23] S. B. Sathe, and B. G. Sammakia, “An Analytical Study of the Optimized Performance of an Impingement Heat Sink,” J. Electron. Packag., vol. 126, pp. 528-534, 2004.
[24] A. Shah, B. G. Sammakia, H. Srihari, and K. Ramakrishna, “A Numerical Study of the Thermal Performance of an Impingement Heat Sink-Fin Shape Optimization,” IEEE Trans. Compon. Packaging Technol., vol. 27, no. 4, pp. 710-717, 2004.
[25] A. Shah, B. G. Sammakia, K. Srihari, and K. Ramakrishna, “Optimization Study for a Parallel Plate Impingement Heat Sink,” J. Electron. Packag., vol. 128, pp. 311-318, 2006.
[26] G. Lorenzini, and S. Moretti, “Numerical Analysis on Heat Removal from Y-shaped Fins: Efficiency and Volume Occupied for a New Approach to Performance Optimisation,” Int. J. Therm. Sci., vol. 46, pp. 573-579, 2007.
[27] P. Naphon, and A. Sookkasem, “Investigation on Heat Transfer Characteristics of Tapered Cylinder Pin Fin Heat Sinks,” Energy Conv. Manag., vol. 48, pp. 2671-2679, 2007.
[28] T. H. Ji, S. Y. Kim, and J. M. Hyun, “Pressure Drop and Heat Transfer Correlations for Triangular Folded Fin Heat Sinks,” IEEE Trans. Compon. Packaging Technol., vol. 30, no. 1, pp. 3-8, 2007.
[29] H. Wee, Q. Zhang, P. M. Ligrani, and S. Narasimhan, “Numerical Predictions of Heat Transfer and Flow Characteristics of Heat Sinks with Ribbed and Dimpled Surfaces in Laminar Flow,” Numer. Heat Tranf. A-Appl., vol. 53, pp. 1156-1175, 2008.
[30] J. P. van Doormaal, and F. D. Raithby, “Enhancements of the SIMPLE method for predicting incompressible fluid flows,” Numer. Heat Tranf., vol. 7, pp. 147-163, 1984.