Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30526
Ab Initio Molecular Dynamics Simulations of Furfural at the Liquid-Solid Interface

Authors: Sanwu Wang, Hongli Dang, Wenhua Xue, Darwin Shields, Xin Liu, Friederike C. Jentoft, Daniel E. Resasco


The bonding configuration and the heat of adsorption of a furfural molecule on the Pd(111) surface were determined by ab initio density-functional-theory calculations. The dynamics of pure liquid water, the liquid-solid interface formed by liquid water and the Pd(111) surface, as well as furfural at the water-Pd interface, were investigated by ab initio molecular dynamics simulations at finite temperatures. Calculations and simulations suggest that the bonding configurations at the water-Pd interface promote decarbonylation of furfural.

Keywords: Density Functional Theory, Bio-Fuels, Ab initio molecular dynamics simulations, liquid-solid interfaces

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845


[1] S. Sitthisa, T. Pham, T. Prasomsri, T. Sooknoi, R. G. Mallinson, D. E. Resasco, “Conversion of furfural and 2-methylpentanal on Pd/SiO2 and PdCu/SiO2 catalysts,” Journal of Catalysis, vol. 280, no. 1, 2011, pp. 17–27.
[2] S. Sitthisa, D. E. Resasco, “Hydrodeoxygenation of furfural over supported metal catalysts: a comparative study of Cu, Pd and Ni,” Catalysis Letters, vol. 141, no. 6, Jun. 2011, pp. 784–791.
[3] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, “Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients,” Reviews of Modern Physics, vol. 64, no. 4, 1992, pp. 1045–1097.
[4] G. Kresse, J. Hafner, “Ab initio molecular dynamics for liquid metals,” Physical Review B, vol. 47, no. 1, 1993, pp. 558–561.
[5] G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science, vol. 6, no. 1, Jul. 1996, pp. 15–50.
[6] G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physical Review B, vol. 54, no. 16, 1996, pp. 11169–11186.
[7] S. Wang, M. Di Ventra, S.-G. Kim, and S. T. Pantelides, “Atomic-scale dynamics of the formation and dissolution of carbon clusters in SiO2,” Physical Review Letters, vol. 86, no. 26, 2001, pp. 5946–5949.
[8] S. Wang, A. Borisevich, S. N. Sergey, K. Sohlborg, M. V. Glazoff, S. J. Pennycook, and S. T. Pantelides, “Dopants adsorbed as single atoms prevent degradation of catalysts,” Nature Materials, vol. 3, Feb. 2004, pp. 143–146.
[9] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, “Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation,” Physical Review B, vol. 46, no. 11, 1992, pp. 6671–6687.
[10] J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Physical Review B, vol. 45, no. 23, 1992, pp. 13244–13249.
[11] D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,” Physical Review B, vol. 41, no.11, 1990, pp. 7892–7895.
[12] G. Kresse and J. Hafner, “Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements,” Journal of Physics: Condensed Matter, vol. 6, no. 40, 1994, pp. 8245–8257.
[13] R. Car, M. Parrinello, “Unified approach for molecular dynamics and density-functional theory,” Physical Review Letters, vol. 55, no. 22, 1985, pp. 2471–2474.
[14] S. Nosé, “A unified formulation of the constant temperature molecular dynamics methods,” Journal of Chemical Physics, vol.81, no. 1, 1984, pp. 511–519.
[15] S. Wang, S. J. Mitchell, P. A. Rikvold, “Ab initio monte carlo simulations for finite-temperature properties: application to lithium clusters and bulk liquid lithium,” Computational Materials Science, vol. 29, no. 2, Feb. 2004, pp. 145–151.