Particle Swarm Optimization for Design of Water Distribution Systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Particle Swarm Optimization for Design of Water Distribution Systems

Authors: A. Vasan

Abstract:

Particle swarm optimization (PSO) technique is applied to design the water distribution pipeline network. A simulation-optimization model is formulated with the objective of minimizing cost and is applied to a benchmark water distribution system optimization problem. The benchmark problem taken for the application of PSO technique to optimize the pipe size of the water distribution network is New York City water supply system problem. The results from the analysis infer that PSO is a potential alternative optimization technique when compared to other heuristic techniques for optimal sizing of water distribution systems.

Keywords: Water distribution systems, Optimization, Particle swarm optimization, Swarm intelligence, New York water supply system.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1085265

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476

References:


[1] Yates, D. F., Templeman, A. B., and Boffey, T. B. (1984). "The computational complexity of the problem of determining least capital cost designs for water supply networks." Engrg. Optimization, 7(2), 142-155.
[2] Banos, R., Gil, C., Agulleiro, J. I., and Reca, J. (2007). "A memetic algorithm for water distribution network design." A. Saad et al. (Eds.): Soft Computing in Industrial Applications, ASC 39, 279-289, Springer-Verlag Berlin, Heidelberg.
[3] Vasan, A., and Simonovic, S. S. (2010). "Optimization of water distribution networks using differential evolution." J. Water Resour. Plan. Manage., 136(2), 279-287.
[4] Alperovits, E., and Shamir, U. (1977). "Design of optimal water distribution system." Water Resour. Res., 13(6), 885-900.
[5] Quindry, G. E., Liebman, J. C., and Brill, E. D. (1981). "Optimization of looped water distribution systems." J. Environ. Eng. Div., 107(4), 665-679.
[6] Featherstone, R., and El-Jumaily, K. (1983). "Optimal diameter selection for pipe networks." J. Hydraul. Eng., 109(2), 221-234.
[7] Gessler, J., and Walsh, T. M. (1985). "Water distribution system optimization." Technical Rep. TR EL-85-11, U.S. Army Corps of Engineers, Waterways Experimentation Station, Vicksburg, Miss.
[8] Goulter, I. C., and Morgan, D. R. (1985). "An integrated approach to the layout and design of water distribution networks." Civ. Eng. Sys., 2(2), 104-113.
[9] Fujiwara, 0., and 'Chang, D. B. (1990). "A two-phase decomposition method for optimal design of looped water distribution networks." Water Resour. Res., 23(6), 977-982.
[10] Shamir, U. (1974). "Optimal design and operation of water distribution systems." Water Resourc. Res., 10(1), 27-35.
[11] El-Bahrawy, A., and Smith, A. A. (1987). "A methodology for optimal design of pipe distribution networks." Can. J. Civ. Eng., 14, 207-215.
[12] Su, Y. L., Mays, L. W., Duan, N., and Lansey, K. E. (1987). "Reliability-based optimization model for water distribution systems." J. Hydraul. Eng., 113(12), 1539-1556.
[13] Lansey, K. E., and Mays, L. W. (1989). "Optimization model for design of water distribution systems." Reliability analysis of water distribution system, L. R. Mays, ed., ASCE, Reston, Va.
[14]Duan, N., Mays, L. W., and Lansey, K. E. (1990). "Optimal reliability based design of pumping and distribution systems.", J. Hydraul. Eng., 116(2), 249-268.
[15]Murphy, L. J., and Simpson, A. R. (1992). "Genetic algorithms in pipe network optimization." Research Rep. No. R93, Dept. of Civil and Environmental Engineering, Univ. of Adelaide, Australia.
[16] Walters, G. A., and Cembrowicz, R. G. (1993). "Optimal design of water distribution networks." Water supply systems, state-of-the-art and future trends, E. Cabrera and F. Martinez, eds., Computational Mechanics Inc., Southampton, England, 91-117.
[17] Simpson, A. R., Dandy, G. C., and Murphy, L. J. (1994). "Genetic algorithms compared to other techniques for pipe optimization. " J. Water Resour. Plan. Manage., 120(4), 423-443.
[18]Dandy, G. C., Simpson, A. R., and Murphy, L. J. (1996). "An improved genetic algorithm for pipe network optimization." Water Resour. Res., 32(2), 449-458.
[19] Savic, D., and Walters, G. (1997). "Genetic algorithms for least-cost design of water distribution networks." J. Water Resour. Plan. Manage., 123(2), 67-77.
[20] Gupta, I., Gupta, A., and Khanna, P. (1999). "Genetic algorithm for optimization of water distribution systems." J. Environ. Model. Software, 437-446.
[21]Lippai, I., Heaney, J. P., and Lauguna, M. (1999). "Robust water system design with commercial intelligent search optimizers." J. Comput. Civ. Eng., 13(3), 135-143.
[22] Vairavamoorthy, K., and Ali, M. (2000). "Optimal design of water distribution systems using genetic algorithms." Comput. Aided Civ. Infrastruct. Eng., 15(2), 374-382.
[23]Loganathan, G. V., Greene, J. J., and Aim, T. J. (1995). "Design heuristic for globally minimum cost water-distribution systems." J. Water Resour. Plan. Manage., 121(2), 182-192.
[24] Cunha, M., and Sousa, J. (1999). "Water distribution network design optimization: Simulated annealing approach." J. Water Resour. Plan. Manage., 125(4), 215-221.
[25] Geem, Z. W., Kim, J. H., and Loganathan, G. V. (2002). "Harmony search optimization: application to pipe network design." International Journal of Modeling and Simulation, 22(2), 125-133.
[26]Eusuff, M. Muzaffar., and Lansey, E. Kevin. (2003). "Optimization of water distribution network design using the shuffled frog leaping algorithm." .1. Water Resour. Plan. Manage., 129(3), 210-225.
[27] Maier, H. R., Simpson, A. R., Zecchin, A. C., Foong, W. K., Phang, K. Y., Seah, H. Y., and Tan, C. L. (2003). "Ant colony optimization for design of water distribution systems" .1. Water Resour. Plan. Manage., 129(3), 200¬209.
[28] Kennedy, J., Eberhart, R. C., and Shi, Y. (2001). Swarm Intelligence, San Francisco: Morgan Kaufmann Publishers.
[29] Kennedy, J., and Eberhart, R.C. (1995). "Particle swarm optimization." Proceedings of IEEE International Conference on Neural Networks, Piscataway, New Jersey, 1942-1948.
[30] Shaake, J. C., and Lai, D. (1969). "Linear programming and dynamic programming application to water distribution network design." Rep. 116, Dept. of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Mass.
[31] Chatterjee, A., and Siarry, P. (2006). "Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization." Computers and Operations Research, 33, 859-871.
[32]Rossman, L. A. (2000). EPANET, User's Manual. U.S. Environmental Protection Agency, Cincinnati.
[33] Morgan, G. R., and Goulter, I. C. (1985). "Optimal urban water distribution design." Water Resour. Res., 21(5), 642-652.
[34] Murphy, L. J., Simposon, A. R., and Dandy, G. C. (1983). "Pipe network optimization using an improved genetic algorithm." Research Rep. No. R109, Dept. of Civil and Environmental Engineering, Univ. of Adelaide, Australia.