Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30526
Modeling the Human Cardiovascular System with Aspecial Focus on the Heart Using Dymola

Authors: Stefanie Heinke, Carina Pereira, Jan Spillner, Steffen Leonhardt


Severe heart failure is a common problem that has a significant effect on health expenditures in industrialized countries; moreover it reduces patient-s quality of life. However, current research usually focuses either on detailed modeling of the heart or on detailed modeling of the cardiovascular system. Thus, this paper aims to present a sophisticated model of the heart enhanced with an extensive model of the cardiovascular system. Special interest is on the pressure and flow values close to the heart since these values are critical to accurately diagnose causes of heart failure. The model is implemented in Dymola an object-oriented, physical modeling language. Results achieved with the novel model show overall feasibility of the approach. Moreover, results are illustrated and compared to other models. The novel model shows significant improvements.

Keywords: Modeling, Cardiovascular system, heart

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448


[1] T. Weber, Grundlagen: Zentraler Blutdruck, Pulswellenreflexionen, Pulswellengeschwindigkeit, J Hyperton, vol. 14, No. 2, pp. 9-13, 2010.
[2] M. S. Leaning, H. E. Pullen, E. R. Carson and L. Finkelstein, Modelling a complex biological system: the human cardiovascular system 1. Methodology and model description, Transaction of the Institute of Measurement and Control, vol. 5, pp.71-86, 1983.
[3] B. W. Smith, J. G. Chase, R. I. Nokes, G. M. Shaw and G. Wake, Minimal haemodynamic system model including ventricular interaction and valve dynamics, Medical Engineering & Physics, vol. 26, pp.131-139, 2004.
[4] B. W. Smith, J. G. Chase, G. M. Shaw, R. I. Nokes, Experimentally verified minimal cardiovascular system model for rapid diagnostic assistance, Control Engineering Practice, vol. 13, pp. 1183-1193, 2005.
[5] J. E. W. Beneken and B. DeWit, A physical approach to hemodynamic aspects of the human cardiovascular system, Physical Bases of Circulatory Transport: Regulation and Exchange, E.B. Reeve and A. C. Guyton, W.B. Saunders Company, Philadelphia, 1967.
[6] K. Lu, J. W. Clark, Jr., F. H. Ghorbel, D. L. Ware and A. Bidani, A human cardiovascular model applied to the analysis of the Valsalva maneuver, AAJP - Heart and Circulatory Physiology, vol. 281, pp. H2661-H2679, 2001.
[7] R. Shabetai, L. Mangiardi, V. Bhargava, J. Ross, Jr., C. B. Higgins, The Pericardium and Cardiac Function, Progress in Cardiovascular Diseases, vol.XXII, No. 2, 107-134, 1979.
[8] W. D. McArdle, F. I. Katch, V. L. Katch, Exercise Physiology : Nutrition, Energy, and Human Performance, 7th ed., Philadelphia, PA, USA: Lippincott Williams Wilkins, 2010.
[9] M. F. Snyder, V. C. Rideout, R. J. Hillestad, Computer modeling of the human systemic arterial tree, J Biomech, vol. 1, pp. 341-353, 1968.
[10] A. C. Guyton, J. E. Hall, Textbook of medical physiology, 11th. ed.,Philadelphia, PA, USA: Elsevier Inc.,2006.
[11] P. Fritzson, Principles of Object-Oriented Modeling and Simulation with Modelica 2.1, IEEE press, Piscataway, NJ; 2004.
[12] S. Silbernagl, A. Despopoulos, Taschenatlas Physiologie, 7th. ed., Stuttgart, Germany, Thieme Verlag, 2007.
[13] V. Hombach (Hrsg.), Kardiovaskulaere Magnetresonanztomographie, Grundlagen-Technik-klinische Anwendung, Stuttgart, Germany, Schattauer, 2005.
[14] D. Burkhoff, I. Mirsky, H. Suga, Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers, Am J Physiol Heart Circ Physiol, vol. 289, pp.H501-H512, 2005.
[15] H. Senzaki, C.-H. Chen, D. A. Kass, Single-Beat Estimation of End- Systolic Pressure-Volume Relation in Humans, A New Method With the Potential for Noninvasive Application , Circulation, vol. 94, pp.2497- 2506, 1996.