WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/15377,
	  title     = {Pharmaceutical Microencapsulation Technology for Development of Controlled Release Drug Delivery systems},
	  author    = {Mahmood Ahmad and  Asadullah Madni and  Muhammad Usman and Abubakar Munir and  Naveed Akhtar and  Haji M. Shoaib Khan},
	  country	= {},
	  institution	= {},
	  abstract     = {This article demonstrated development of
controlled release system of an NSAID drug, Diclofenac
sodium employing different ratios of Ethyl cellulose.
Diclofenac sodium and ethyl cellulose in different proportions
were processed by microencapsulation based on phase
separation technique to formulate microcapsules. The
prepared microcapsules were then compressed into tablets to
obtain controlled release oral formulations. In-vitro evaluation
was performed by dissolution test of each preparation was
conducted in 900 ml of phosphate buffer solution of pH 7.2
maintained at 37 ± 0.5 °C and stirred at 50 rpm. At predetermined
time intervals (0, 0.5, 1.0, 1.5, 2, 3, 4, 6, 8, 10, 12,
16, 20 and 24 hrs). The drug concentration in the collected
samples was determined by UV spectrophotometer at 276 nm.
The physical characteristics of diclofenac sodium
microcapsules were according to accepted range. These were
off-white, free flowing and spherical in shape. The release
profile of diclofenac sodium from microcapsules was found to
be directly proportional to the proportion of ethylcellulose and
coat thickness. The in-vitro release pattern showed that with
ratio of 1:1 and 1:2 (drug: polymer), the percentage release of
drug at first hour was 16.91 and 11.52 %, respectively as
compared to 1:3 which is only 6.87 % with in this time. The
release mechanism followed higuchi model for its release
pattern. Tablet Formulation (F2) of present study was found
comparable in release profile the marketed brand Phlogin-SR,
microcapsules showed an extended release beyond 24 h.
Further, a good correlation was found between drug release
and proportion of ethylcellulose in the microcapsules.
Microencapsulation based on coacervation found as good
technique to control release of diclofenac sodium for making
the controlled release formulations.},
	    journal   = {International Journal of Pharmacological and Pharmaceutical Sciences},
	  volume    = {5},
	  number    = {3},
	  year      = {2011},
	  pages     = {82 - 85},
	  ee        = {https://publications.waset.org/pdf/15377},
	  url   	= {https://publications.waset.org/vol/51},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 51, 2011},
	}