An Overview of the Factors Affecting Microbial-Induced Calcite Precipitation and its Potential Application in Soil Improvement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
An Overview of the Factors Affecting Microbial-Induced Calcite Precipitation and its Potential Application in Soil Improvement

Authors: Wei-Soon Ng, Min-Lee Lee, Siew-Ling Hii

Abstract:

Microbial-induced calcite precipitation (MICP) is a relatively green and sustainable soil improvement technique. It utilizes biochemical process that exists naturally in soil to improve engineering properties of soils. The calcite precipitation process is uplifted by the mean of injecting higher concentration of urease positive bacteria and reagents into the soil. The main objective of this paper is to provide an overview of the factors affecting the MICP in soil. Several factors were identified including nutrients, bacteria type, geometric compatibility of bacteria, bacteria cell concentration, fixation and distribution of bacteria in soil, temperature, reagents concentration, pH, and injection method. These factors were found to be essential for promoting successful MICP soil treatment. Furthermore, a preliminary laboratory test was carried out to investigate the potential application of the technique in improving the shear strength and impermeability of a residual soil specimen. The results showed that both shear strength and impermeability of residual soil improved significantly upon MICP treatment. The improvement increased with increasing soil density.

Keywords: Bacteria, biocementation, bioclogging, calcite precipitation, soil improvement.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1084674

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5848

References:


[1] B. B. K. Huat, "Deformation and Shear Strength Characteristics of Some Tropical Peat and Organic Soils," Pertanika J. Sci. Technol., vol. 14, pp. 61-74, 2006.
[2] S. Kazemian, B. B. K. Huat, A. Prasad, and M. Barghchi, "A state of art review of peat Geotechnical engineering perspective," Int. J. Phys. Sci., vol. 6, pp. 1974-1981, 2011.
[3] M. H. Ho and C. M. Chan, "Some Mechanical Properties of Cement Stabilized Malaysian Soft Clay," World Acad. Sci. Eng. Technol., vol. 74, pp. 24-31, 2011.
[4] R. H. Karol, Chemical grouting and soil stabilization, 3rd ed. New York: M. Dekker, 2003.
[5] P. P. Xanthakos, L. W. Abramson, and D. A. Bruce, Ground control and improvement. New York: J. Wiley, 1994.
[6] C. Anagnostopoulos and S. Hadjispyrou, "Laboratory study of an epoxy resin grouted sand," Ground Improv., vol. 8, pp. 39-45, 2004.
[7] S. Peethamparan, J. Olek, and S. Diamond, "Mechanism of stabilization of Na-montmorillonite clay with cement kiln dust," Cem. Concr. Res., vol. 39, pp. 580-589, 2009.
[8] E. A. Basha, R. Hashim, H. B. Mahmud, and A. S. Muntohar, "Stabilization of residual soil with rice husk ash and cement," Constr. Build. Mater., vol. 19, pp. 448-453, 2005.
[9] J. T. DeJong, M. B. Fritzges, and K. N├╝sslein, "Microbially Induced Cementation to Control Sand Response to Undrained Shear," J. Geotech. Geoenviron. Eng., vol. 132, pp. 1381-1392, 2006.
[10] W. De Muynck, D. Debrouwer, N. De Belie, and W. Verstraete, "Bacterial carbonate precipitation improves the durability of cementitious materials," Cem. Concr. Res., vol. 38, pp. 1005-1014, 2008.
[11] V. Achal, X. Pan, and N. Özyurt, "Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation," Ecol. Eng., vol. 37, pp. 554-559, 2011.
[12] D. Sarda, H. Choonia, D. Sarode, and S. Lele, "Biocalcification by Bacillus pasteurii urease: a novel application," J. Ind. Microbiol. Biotechnol., vol. 36, pp. 1111-1115, 2009.
[13] M. V. d. Ruyt and W. V. d. Zon, "Biological in situ reinforcement of sand in near-shore areas," Proc. Inst. Civ. Eng. Geotech. Eng., vol. 162, pp. 81-83, 2009.
[14] W. Lu, C. Qian, and R. Wang, "Study on soil solidification based on microbiological precipitation of CaCO3," Sci. China Technol. Sci., vol. 53, pp. 2372-2377, 2010.
[15] C. Qian, Q. Pan, and R. Wang, "Cementation of sand grains based on carbonate precipitation induced by microorganism," Sci. China Technol. Sci., vol. 53, pp. 2198-2206, 2010.
[16] A. Gurbuz, Y. D. Sari, Z. N. Yuksekdag, and B. Cinar, "Cementation in a matrix of loose sandy soil using biological treatment method," Afr. J. Biotechnol., vol. 10, pp. 7432-7440, 2011.
[17] M. Nemati and G. Voordouw, "Modification of porous media permeability, using calcium carbonate produced enzymatically in situ," Enzyme Microb. Technol., vol. 33, pp. 635-642, 2003.
[18] M. Nemati, E. A. Greene, and G. Voordouw, "Permeability profile modification using bacterially formed calcium carbonate: comparison with enzymic option," Process Biochem., vol. 40, pp. 925-933, 2005.
[19] V. Ivanov and J. Chu, "Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ," Rev. Environ. Sci. Biotechnol., vol. 7, pp. 139-153, 2008.
[20] Y. Fujita, F. G. Ferris, R. D. Lawson, F. S. Colwell, and R. W. Smith, "Calcium Carbonate Precipitation by Ureolytic Subsurface Bacteria," Geomicrobiol. J., vol. 17, pp. 305-318, 2000 2000.
[21] P. Vandevivere and P. Baveye, "Relationship between Transport of Bacteria and Their Clogging Efficiency in Sand Columns," Appl Environ Microbiol, vol. 58, pp. 2523-2530, Aug 1992.
[22] G. Z. Abdel Aal, E. A. Atekwana, and E. A. Atekwana, "Effect of bioclogging in porous media on complex conductivity signatures," J. Geophys. Res., vol. 115, p. G00G07, 2010.
[23] H. L. Mobley, M. D. Island, and R. P. Hausinger, "Molecular biology of microbial ureases," Microbiol. Rev., vol. 59, pp. 451-80, Sep 1995.
[24] K. L. Bachmeier, A. E. Williams, J. R. Warmington, and S. S. Bang, "Urease activity in microbiologically-induced calcite precipitation," J. Biotechnol., vol. 93, pp. 171-181, 2002.
[25] D. E. Kile, D. D. Eberl, A. R. Hoch, and M. M. Reddy, "An assessment of calcite crystal growth mechanisms based on crystal size distributions," Geochim. Cosmochim. Acta, vol. 64, pp. 2937-2950, 2000.
[26] S. Castanier, G. Le Métayer-Levrel, and J.-P. Perthuisot, "Cacarbonates precipitation and limestone genesis -- the microbiogeologist point of view," Sediment. Geol., vol. 126, pp. 9-23, 1999.
[27] J. K. Mitchell and J. C. Santamarina, "Biological Considerations in Geotechnical Engineering," J. Geotech. Geoenviron. Eng., vol. 131, pp. 1222-1233, 2005.
[28] S. Stocks-Fischer, J. K. Galinat, and S. S. Bang, "Microbiological precipitation of CaCO3," Soil Biol. Biochem., vol. 31, pp. 1563-1571, 1999.
[29] A. A. Qabany, B. Mortensen, B. Martinez, K. Soga, and J. DeJong, "Microbial Carbonate Precipitation Correlation of S-Wave Velocity with Calcite Precipitation," Geo-Frontiers 2011, pp. 3993-4001, 2011.
[30] E. S. Kucharski, R. Cord-ruwisch, V. Whiffin, and S. M. Al-thawadi, "Microbial Biocementation," United States Patent, 2008.
[31] F. Hammes, N. Boon, J. de Villiers, W. Verstraete, and S. D. Siciliano, "Strain-specific ureolytic microbial calcium carbonate precipitation," Appl. Environ. Microbiol., vol. 69, pp. 4901-9, Aug 2003.
[32] K. Van Tittelboom, N. De Belie, W. De Muynck, and W. Verstraete, "Use of bacteria to repair cracks in concrete," Cem. Concr. Res., vol. 40, pp. 157-166, 2010.
[33] R. Siddique, V. Achal, M. Reddy, and A. Mukherjee, "Improvement in the compressive strength of cement mortar by the use of a microorganism - Bacillus megaterium," in Excellence in Concrete Construction through Innovation. M. C. Limbachiya and H. Kew, Eds., United Kingdom: Taylor & Francis, 2008, pp. 27-30.
[34] V. S. Whiffin, L. A. van Paassen, and M. P. Harkes, "Microbial Carbonate Precipitation as a Soil Improvement Technique," Geomicrobiol. J., vol. 24, pp. 417-423, July 2007.
[35] B. Vijay, H. Prashant, and R. Darshak, "Bacterial concrete - An ideal concrete for historical structures," in Concrete Solutions. CRC Press, 2009.
[36] J. Dick, W. De Windt, B. De Graef, H. Saveyn, P. Van der Meeren, N. De Belie, and W. Verstraete, "Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species," Biodegradation, vol. 17, pp. 357-367, 2006.
[37] P. Schloss and J. Handelsman, "Status of the microbial census," Microbiol. Mol. Biol. Rev., vol. 68, pp. 686-691, 2004.
[38] P. H. Janssen, "Identifying the Dominant Soil Bacterial Taxa in Libraries of 16S rRNA and 16S rRNA Genes," Appl. Environ. Microbiol., vol. 72, pp. 1719-1728, March 1, 2006 2006.
[39] R. M. Maier, I. L. Pepper, and C. P. Gerba, Environmental Microbiology, 2nd ed. China: Elsevier Science, 2009, pp. 366.
[40] G. D. Okwadha and J. Li, "Optimum conditions for microbial carbonate precipitation," Chemosphere, vol. 81, pp. 1143-8, Nov 2010.
[41] W. Li, L. P. Liu, P. P. Zhou, L. Cao, L. J. Yu, and S. Y. Jiang, "Calcite precipitation induced by bacteria and bacterially produced carbonic anhydrase," Curr. Sci., vol. 100, pp. 502-508, 2011.
[42] B. Lian, Q. Hu, J. Chen, J. Ji, and H. Teng, "Carbonate biomineralization induced by soil bacterium Bacillus megaterium," Geochim. Cosmochim. Acta, vol. 70, pp. 5522-5535, 2006.
[43] H. v. Knorre and W. E. krumbein. (2000) Bacterial Calcification. Microbial Sediments. 25-31.
[44] M. P. Harkes, L. A. van Paassen, J. L. Booster, V. S. Whiffin, and M. C. M. van Loosdrecht, "Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement," Ecol. Eng., vol. 36, pp. 112-117, 2010.
[45] G. Ritvo, O. Dassa, and M. Kochba, "Salinity and pH effect on the colloidal properties of suspended particles in super intensive aquaculture systems," Aquac., vol. 218, pp. 379-386, 2003.
[46] S. Torkzaban, S. S. Tazehkand, S. L. Walker, and S. A. Bradford, "Transport and fate of bacteria in porous media: Coupled effects of chemical conditions and pore space geometry," Water Resour. Res., vol. 44, p. W04403, 2008.
[47] O. Selinus, Essentials of medical geology : impacts of the natural environment on public health. Amsterdam ; London: Elsevier Academic Press, 2005, pp. 483.
[48] M. Z. Jacobson, Fundamentals of atmospheric modeling, 2nd ed. Cambridge: Cambridge University Press, 2005, pp. 254-255.
[49] S. Doty and W. C. Turner, Energy management handbook, 7th ed. Lilburn, Ga.: Fairmont Press ; London : Taylor & Francis, 2009, pp. 734.
[50] Abdul Rahim Nik, Baharuddin Kasran, and Azman Hassan, "Soil temperature regimes under mixed dipterocarp forests of Peninsular Malaysia " Pertanika J. Sci. Technol., vol. 9, pp. 277-284, 1986.
[51] M. International Society for Environmental Biotechnology and D. L. Wise, Global environmental biotechnology : proceedings of the Third Biennial Meeting of the International Society for Environmental Biotechnology, 15-20 July 1996, Boston, MA U.S.A. Amsterdam ; Oxford: Elsevier, 1997, pp. 745-746.
[52] D. H. Bergey and D. R. Boone, Bergey's manual of systematic bacteriology, 2nd ed. New York: Springer, 2009, pp. 34.
[53] A. de Bary, Vergleichende Morphologie und Biologie der Pilze, Mycetozoen und Bacterien. Leipzig: Wilhelm Engelmann, 1884.
[54] K. Sahrawat, "Effects of temperature and moisture on urease activity in semi-arid tropical soils," Plant and Soil, vol. 78, pp. 401-408, 1984.
[55] Z. P. Liang, Y. Q. Feng, S. X. Meng, and Z. Y. Liang, "Preparation and Properties of Urease Immobilized onto Glutaraldehyde Cross-linked Chitosan Beads," Chin. Chem. Letters, vol. 16, pp. 135-138, 2005.
[56] Y. Y. Chen, K. A. Clancy, and R. A. Burne, "Streptococcus salivarius urease: genetic and biochemical characterization and expression in a dental plaque streptococcus," Infect. Immun., vol. 64, pp. 585-92, Feb 1996.
[57] M. a. A. Rivadeneyra, J. Párraga, R. Delgado, A. Ramos-Cormenzana, and G. Delgado, "Biomineralization of carbonates by Halobacillus trueperi in solid and liquid media with different salinities," FEMS Microbiol. Ecol., vol. 48, pp. 39-46, 2004.
[58] W. De Muynck, K. Verbeken, N. De Belie, and W. Verstraete, "Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone," Ecol. Eng., vol. 36, pp. 99-111, 2010.
[59] M. A. Rivadeneyra, G. Delgado, A. Ramos-Cormenzana, and R. Delgado, "Biomineralization of carbonates by Halomonas eurihalina in solid and liquid media with different salinities: crystal formation sequence," Res. Microbiol., vol. 149, pp. 277-87, 1998.
[60] M. A. Rivadeneyra, G. Delgado, M. Soriano, A. Ramos-Cormenzana, and R. Delgado, "Precipitation of carbonates by Nesterenkonia halobia in liquid media," Chemosphere, vol. 41, pp. 617-24, Aug 2000.
[61] M. R. Ferrer, J. Quevedo-Sarmiento, V. Bejar, R. Delgado, A. Ramos-Cormenzana, and M. A. Rivadeneyra, "Calcium carbonate formation by Deleya halophila: Effect of salt concentration and incubation temperature," Geomicrobiol. J., vol. 6, pp. 49-57, 1988.
[62] M. R. Ferrer, J. Quevedo-Sarmiento, M. A. Rivadeneyra, V. Bejar, R. Delgado, and A. Ramos-Cormenzana, "Calcium carbonate precipitation by two groups of moderately halophilic microorganisms at different temperatures and salt concentrations," Curr. Microbiol., vol. 17, pp. 221-227, 1988.
[63] M. A. Rivadeneyra, R. Delgado, G. Delgado, A. D. Moral, M. R. Ferrer, and A. Ramos-Cormenzana, "Precipitation of carbonates by Bacillus sp. isolated from saline soils," Geomicrobiol. J., vol. 11, pp. 175-184, 1993.
[64] M. A. Rivadeneyra, R. Delgado, A. del Moral, M. R. Ferrer, and A. Ramos-Cormenzana, "Precipatation of calcium carbonate by Vibrio spp. from an inland saltern," FEMS Microbiol. Ecol., vol. 13, pp. 197- 204, 1994.
[65] D. J. Evans, Jr., D. G. Evans, S. S. Kirkpatrick, and D. Y. Graham, "Characterization of the Helicobacter pylori urease and purification of its subunits," Microb. Pathog., vol. 10, pp. 15-26, 1991.
[66] K. D. Arunachalam, K. S. Sathyanarayanan, B. S. Darshan, and R. B. Raja, "Studies on the characterisation of Biosealant properties of Bacillus sphaericus," Int. J. Eng. Sci. Technol., vol. 2, pp. 270-277, 2010.
[67] B. C. Martinez, T. H. Barkouki, J. D. DeJong, and T. R. Ginn, "Upscaling of Microbial Induced Calcite Precipitation in 0.5m Columns Experimental and Modeling Results," Geo-Frontiers 2011, pp. 4049- 4059, 2011.
[68] T. Barkouki, B. Martinez, B. Mortensen, T. Weathers, J. De Jong, T. Ginn, N. Spycher, R. Smith, and Y. Fujita, "Forward and Inverse Bio- Geochemical Modeling of Microbially Induced Calcite Precipitation in Half-Meter Column Experiments," Transp. Porous Med., pp. 1-17, 2010.
[69] D. L. Stoner, S. M. Watson, R. D. Stedtfeld, P. Meakin, L. K. Griffel, T. L. Tyler, L. M. Pegram, J. M. Barnes, and V. A. Deason, "Application of stereolithographic custom models for studying the impact of biofilms and mineral precipitation on fluid flow," Appl. Environ. Microbiol., vol. 71, pp. 8721-8, Dec 2005.
[70] BSI, "British Standard 1377: 1990 " in Methods of test for soils for civil engineering purposes, ed. United Kingdom: BSI Group, 1990.