
 

 

  
Abstract—A welded structure must be inspected to guarantee 

that the weld quality meets the design requirements to assure safety 

and reliability. However, X-ray image analyses and defect 

recognition with the computer vision techniques are very complex. 

Most difficulties lie in finding the small, irregular defects in poor 

contrast images which requires pre processing to image, extract, and 

classify features from strong background noise. This paper addresses 

the issue of designing methodology to extract defect from noisy 

background radiograph with image processing. Based on the use of 

actives contours this methodology seems to give good results  

 

Keywords—Welding, Radiography, Computer vision, Active 

contour. 

I. INTRODUCTION 

HE inspection of welds is a very important task for 

assuring safety and reliability in several industrial sectors. 

For this purpose Non-Destructive Testing (NDT) techniques 

have been employed to test a material for surface or internal 

flaws without destroying the welded components.  Among the 

methods of NDT, radiography (X-rays or sometimes gamma 

rays) seems to be the most effective method and the experts 

are able to identify most types of defects in the images 

produced by this method. Some of the most common weld 

defects that can be identified in the radiographic images are 

the worm holes (worm-like cavities), slag inclusion (slag or 

other foreign matter entrapped during welding), linear porosity 

(linear cavities due to entrapped gas), gas pores (spherical 

cavities due to entrapped gas), lack of fusion (lack of union 

between weld and parent metal) or crack (discontinuity by 

fracture in the metal).  

The interpretation of weld radiographs even by experienced 

inspectors can, however, be subjective and time-consuming 

[1]. With the advances in information technology and artificial 

intelligence techniques, , the opportunity arose to develop a 

radiographic inspection method capable of detecting and 

classifying welding defects automatically, minimizing the 

subjective evaluation errors inherent to the conventional 

method. That is why, several researchers have tried to 

automate the inspection process by employing image 

processing, pattern recognition and computer vision methods 

[2]. The goal of such methods is to give consistent, objective 

and reliable results. One of the essential processes in computer 

vision consists of reducing the huge quantity of information, 

contained in image of objects which we have to recognize, by 
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preserving only the most important points. For that purpose, 

image segmentation is applied to digitized radiography. It 

allows the initial separation of regions of interest into non-

overlapping regions based on intensity or textural information. 

it is generally the first processing applied to the radiographs to 

detect defects [3]. Among the boundary extraction-based 

segmentation techniques, deformable model, also called active 

contours or snakes, are recognized to be one of the efficient 

tools for 2D/3D image segmentation The active contour 

methods provide an effective way for segmentation, in which 

the boundaries of the objects are detected by evolving curves. 

Its success is based on strong mathematical properties and 

efficient numerical schemes. Since first introduced by Kass [4] 

in 1988, many efforts have been done on active contours, or 

snakes, for their application in image processing and computer 

vision, such as image segmentation. Since the introduction, 

active contour models have been widely used in image 

segmentation with promising results. The models are able to 

provide smooth and closed contours to recover object 

boundaries with subpixel accuracy, which is typically not 

possible in classical methods, such as edge detection and 

thresholding. The existing active contour models can be 

categorized into two classes: edge-based models [4–8] and 

region-based models [9–16]. 

In general, edge-based models typically use image gradient 

as an image-based force to attract the contour toward object 

boundaries. These models have been successfully used for 

general images with strong object boundaries, but they may 

suffer from boundary leakage problem. Hence they are 

adapted for a certain class of problems and fail in the presence 

of noise and weak gradient information along the boundaries 

[15][16]. Region-based models have better performance than 

edge-based models in the presence of weak boundaries. 

However, region-based models [8] tend to rely on intensity 

homogeneity and have exhibit better performance. 

Unfortunately the computational cost of such models is rather 

expensive due to the fact that the computations are made over 

a region. 

This paper addresses the issue of extracting defects from 

radiographic images by following the different steps that we 

propose and the use of and hybrid active contour we develop 

in this work. 

This paper is organized as follows: Section 2 will be used to 

relate some characteristics about the nature of the radiographic 

film images and describes the selection of the region of 

interest in radiograms. Moreover, it will be devoted the 

scheme used in the image pre processing. In section 3 we give 

a brief introduction to the mathematical formulation of the 

classical active contour including conventional snakes and 

GVF/GGVF snakes. In section 4 we present the hybrid 
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scheme we developed to create forces for the active contour. 

Section 5 is dedicated to experimental results. We draw the 

main conclusions in section 6. 

II. WELD DEFECT DATABASE, THE REGION OF INTEREST 

SELECTION AND PREPROCESSING  

The radiographic films are often very dark and their density 

is rather large, therefore an ordinary scanner cannot give a 

sufficient lightening through a radiogram. Here, we have used 

a scanner AGFA Arcus II, (800 dpi, 256 grey levels). The 

radiographic films that we have digitized were extracted from 

the standard films provided by International Institute of 

Welding (IIW).After digitization, the principal characteristics 

of our images are: 

1. Small contrast between the background and the weld 

defect regions. These last are characterized by unsharpened 

and blurred edges.  

2. Pronounced granularity due to digitization and the 

type of film used in industrial radiographic testing. 

3. Presence of background gradient of image 

characterizing the thickness variation of the irradiated 

component part.  

For the reasons previously evoked, it becomes difficult, if 

not uncertain to detect, during the radiogram visualization, the 

presence of the small defects and to determine accurately their 

sizes. That is why, it is necessary to start with a pre-processing 

stage in order to reduce or eliminate the noise enclosing in the 

film and improve its visibility. This procedure permits to 

obtain an image which would facilitate later, to drive the snake 

model to the defects. 

A. ROI Selection 

The first task in image pre-processing is the selection of the 

region of interest (ROI): the region where they suspect the 

presence of imperfections. The selection of the ROI saves the 

operator to make treatments on the useless parts of the image, 

permitting reduction of the computing time. The second 

advantage is to save the treatments based on the global 

approaches to use the irrelevant regions of the image, which 

can negatively influence the output results. In addition, the 

limitation of the image to a region of interest (ROI) prevents 

from the detection of false defects outside the weld [17]. 

B. Noise Suppression and Contrast Enhancement 

Since the parametric snake model is gradient information 

based, in case of a weak gradient field, theses information are 

not strong enough to drive the snake model to the boundaries, 

and the model will perform poorly. On the other hand, in the 

presence of noise, the gradient information could attract the 

model to wrong edges. That is why a stage of noise 

suppression and contrast enhancement is necessary. The 

method we choose to eliminate the noise is image smoothing 

by an edge preserving diffusion procedure called anisotropic 

diffusion [18]. The advantage of the method is that 

homogenous regions are smoothed with a Gaussian kernel 

while the contours are preserved from attenuation. In view of 

the radiographic images characteristics, and to improve the 

contrast quality and extract hidden defects, we select a set of 

adaptive contrast enhancement techniques based on 

mathematical morphology [19,20], image statistics[21,22], and 

adaptive histogram equalization [23] we applied to the images 

under investigation. The results are commented in section 5. 

 

 
Fig. 1 Samples of Radiographic films and their associated ROIs    

III. MATH 

The active contour method for image segmentation was 

introduced by Kass et al. in late 1980’s. In this method, a 

curve represented by a chain points called the snake nodes, is 

evolved towards the object boundary under a force, until it 

stops at the boundary. More precisely, the curve moves to 

minimize the energy: 
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λβα                    

(1) 

where l(s) represents the parameterized curve, I(x,y) is the 

image grey-level function, and constants α,β, λ> 0. The first 
two terms in the energy functional smooth the curve. The third 

term attracts the curve to the object boundary, where the value 

of image gradient is large. The dynamics equation of the curve 

to minimize the total energy is given by 

 
2

))s(l(I)s('l)s("l)s(lt ∇∇++= λβα                   (2)   

 

The image function I(x,y) can be replaced by its smoothed 

version Gσ(x,y) * I(x,y), where Gσ(x,y) is a two dimensional 

Gaussian function with zero mean and standard deviation σ, 
and the operator * is the convolution operator. Many efforts 
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have been made to improve this method. In 

force (pressure force) was added in the normal direction of the 

curve to accelerate its motion and increase the capture range. 

Eq.(3) represents the pressure force, where 

unit vector to the curve at the point s, k is a fixed scalar.
 

)s(n.k)s(f
�

=             
 

However the pressure force can not shrink and expand the 

balloon at different parts and hence his formulation leads to 

the fact that these forces must be initialized to push out or 

push in. 

To solve the problem of these methods, Xu and Prince 

proposed the gradient vector flow (GVF) method. Some 

modifications on this method were made afterwards 

this method, the attractive force near the object boundary 

∇|∇I(l(s))|
2
  is extended to the whole computational region by 

diffusion. More precisely, they obtained a force field V = (u, 

v) from the image by minimizing the energy
 

Vf)vvuu(E yxyx

22222 −∇++++= ∫∫µ
 

where 2
)y,x(If ∇= , ,(xIf ∇∇=∇

attractive force to the boundary, and 

constant. In this equation, near the object boundary, 

large, the second term dominates and the minimization gives 

V = f∇ ; while away from the boundary, 

the second term is small, the energy is dominated by the 

diffusion term, which means that the force V is extended 

smoothly from its value near the object boundary. Therefore, 

the capture range is large and there is no need to place the 

initial curve entirely inside or outside the object.

Similar to equation (2) the dynamics equation of the curve 

to minimize the total energy can be expressed as:
 

V)s('l)s("l)s(lt ++= βα
 

However, the initial curve must still be placed near the 

object boundary to be detected, otherwise it might be attracted 

to a boundary of a wrong object or a wrong part of the 

boundary (see the image and the initial contour in 

below). 

 

Fig. 2 GVF snake progression from an initialization to final contour 

for both GVF snakes 

 

have been made to improve this method. In [24,25], a constant 

force (pressure force) was added in the normal direction of the 

curve to accelerate its motion and increase the capture range. 

represents the pressure force, where )s(n
�

 is the normal 

s, k is a fixed scalar. 

                                    (3) 

However the pressure force can not shrink and expand the 

his formulation leads to 

the fact that these forces must be initialized to push out or 

To solve the problem of these methods, Xu and Prince [6] 

the gradient vector flow (GVF) method. Some 

modifications on this method were made afterwards [7]. In 

this method, the attractive force near the object boundary 

is extended to the whole computational region by 

obtained a force field V = (u, 

v) from the image by minimizing the energy 

dxdyf
2

∇−             (4) 

2
)y represents the 

attractive force to the boundary, and µ  is the diffusion 

constant. In this equation, near the object boundary, f∇  is 

large, the second term dominates and the minimization gives 

; while away from the boundary, f∇ is small and thus 

the second term is small, the energy is dominated by the 

diffusion term, which means that the force V is extended 

smoothly from its value near the object boundary. Therefore, 

the capture range is large and there is no need to place the 

ly inside or outside the object.  

Similar to equation (2) the dynamics equation of the curve 

to minimize the total energy can be expressed as: 

V                           (5)      

must still be placed near the 

object boundary to be detected, otherwise it might be attracted 

to a boundary of a wrong object or a wrong part of the 

boundary (see the image and the initial contour in the figure 

 

 
an initialization to final contour 

The explanation for such behavior came from the nature of 

the diffusion scheme of the GVF. Indeed the 

be initialized around the Centers of Strong Divergence (CSD) 

to converge to the right boundaries. The CSD are the points 

where the field changes direction. Even the generalized 

version (GGVF)[7] which is an improved  one still could not 

handle these cases efficiently 

Since we decide to extract the defects from the radiographic 

film background with parametric active contours, we had to 

choose a model that evolves quickly to the boundaries of the 

defect and fits even the narrow concavities. Moreover we 

a model that is insensitive to the initialisation of the first 

contour. To deal with all these issues, we propose to join 

adaptive pressure forces to both the traditional gradient force, 

the GVF forces and even GGVF forces, in order to reduce 

their drawbacks and accelerate the motion of the resulting 

models. The new method is presented in detail in the 

following section 

IV. DEFECTS DETECTION: 

SNAKE 

The pressure force has the attracting propriety of pushing 

any point of the curve forwards or backwards. One has just to 

choose the appropriate weight of the pressure force (

propose to make the value and the sign of k changing 

adaptively with regard to the position of the snake node in the 

image, which makes the force infl

necessary while the other parts will be deflating automatically. 

This way, some parts of the curve will shrink while other parts 

of it expand. This reduces considerably the snake sensitivity to 

the initialization. 

The main idea is to give the balloon force bigger weight 

when the snake node is far from the boundaries and drive it 

quickly to the edges. Moreover, 

stages, but still the pressure forces push the model to go even 

towards thin concavities when the traditional potential force or 

the GVF force becomes weak. In this way, the convergence 

speed is increased and the concavity tracking capacity is 

enhanced. 

Let K be the matrix of all the pressure weights possible in 

the image. The simplest case o

every pixel in the image has a corresponding value 

representing its signed normalized and thresholded distance 

from an edge map first computed (positive inside the object to 

be detected for inflating and negative outside for def

fixe a threshold for the distance map amounts to fixe the 

distances that exceed the threshold 

normalize theses distances amounts that all distances will be 

included between 0 and et 1.  

If an image pixel i is assigned the distance 

normalizing these distance means: 

 

 

MAX

i

i
D

d
di ←∀ .....  where D

The figures below illustrate examples of theses operations 

where a part of a distance map of an object is shown in 

The explanation for such behavior came from the nature of 

the diffusion scheme of the GVF. Indeed the GVF snake must 

be initialized around the Centers of Strong Divergence (CSD) 

to converge to the right boundaries. The CSD are the points 

where the field changes direction. Even the generalized 

version (GGVF)[7] which is an improved  one still could not 

 

Since we decide to extract the defects from the radiographic 

film background with parametric active contours, we had to 

choose a model that evolves quickly to the boundaries of the 

defect and fits even the narrow concavities. Moreover we need 

a model that is insensitive to the initialisation of the first 

To deal with all these issues, we propose to join 

adaptive pressure forces to both the traditional gradient force, 

the GVF forces and even GGVF forces, in order to reduce 

awbacks and accelerate the motion of the resulting 

models. The new method is presented in detail in the 

 FORCES ASSOCIATION FOR THE 

NAKE MODEL  

The pressure force has the attracting propriety of pushing 

curve forwards or backwards. One has just to 

choose the appropriate weight of the pressure force (k). We 

propose to make the value and the sign of k changing 

adaptively with regard to the position of the snake node in the 

image, which makes the force inflating a part of the model if 

necessary while the other parts will be deflating automatically. 

This way, some parts of the curve will shrink while other parts 

of it expand. This reduces considerably the snake sensitivity to 

is to give the balloon force bigger weight 

when the snake node is far from the boundaries and drive it 

quickly to the edges. Moreover, k will go smaller in the latest 

stages, but still the pressure forces push the model to go even 

when the traditional potential force or 

the GVF force becomes weak. In this way, the convergence 

speed is increased and the concavity tracking capacity is 

be the matrix of all the pressure weights possible in 

the image. The simplest case of K is a distance map where 

every pixel in the image has a corresponding value 

representing its signed normalized and thresholded distance 

from an edge map first computed (positive inside the object to 

be detected for inflating and negative outside for deflating).To 

fixe a threshold for the distance map amounts to fixe the 

distances that exceed the threshold DMAX to DMAX. To 

normalize theses distances amounts that all distances will be 

 

is assigned the distance di then 

normalizing these distance means:  

DMAX       is the threshold  

The figures below illustrate examples of theses operations 

where a part of a distance map of an object is shown in Fig. 2. 
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The object boundaries are fixed to "0". These distances are 

thresholded (in Fig. 4) and then normalized in Fig. 5. 

                   

                                        -1    0    1    2
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Outside     -   4  -3  -2 -1    0    1     2    3    4    5   Inside
 

                        -3    2   -1    0    1     2    3    4
 

                                    -1    0    1     2    3
 

                                           0    1     2 

Fig. 3 a signed distance 
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                          -3   2   -1    0    1     2    3    3
 

                                    -1    0    1    2    3
 

                                           0    1    2 

Fig. 4 the same distance thresholded to the distance 3 
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                    -0.66  -0.33   0   0.33    0.66     1     

       -1  -1  -0.66  -0.33    0    0.33    0.66     1    1    1  
 

               -1  -0.66  -0.33   0    0.33    0.66     1    1
 

                             -0.33    0    0.33   0.66     1    
 

                                        0    0.33   0.66      

Fig. 5 After the normalization operation 

 

Each snake node s will have as a pressure weight the 

product of the distance map value at the location of this node 

d(s, edge) and the value of a function at s, ϕ(s). The dynamics 

equation that governs this snake model is given:     

                                  

)s(n)edge,s(d).s(V)).s(()s('l)s("l)s(lt

→

+−++= ϕϕβα 1   

                                                                                   (6)                                                                                                                                                                          

where V = (u,v) is the GVF vectors,  )s(n).edge,s(d
→

 the 

pressure force at the point  s , d(s,edge) the force  weight and 

ϕ the inhibition function of the pressure forces near the 
boundaries and those of the GVF elsewhere. The inhibition 

function we choose is given by: 



















−=

p
contoursd

s
),(

1
1exp)(ϕ                       (7)                                                                                 

where p is an even scalar. 

So thus, ϕ (s) tends to the value 1 when the snake nodes are 

far from the boundaries to be detected and be cancelled out 

near these boundaries and then and annul in the same time the 

pressure forces. In this way, the GVF and pressure force 

competition is eliminated. However to compute the distance 

map we need, we had to resort to a first coarse segmentation 

by thresholding. This can be summarized by the following 

flowchart 

 

 
Fig. 6 The flowchart of the methodology 

V. RESULTS 

As shown in the precedent section, the boundary extraction 

stage was preceded by a noise reduction and contrast 

enhancement stages to enhance the snake performance, and 

drive it to the real boundaries. Noise reduction was achieved 

by an edge preserving smoothing, while for the contrast 

enhancement; we tried a set of adaptive methods. The 

deduction we made about these methods is that the application 

of adaptive methods can alter the well contrasted and good 

quality images. So even these methods are a powerful tool to 

make visible the objects or a part of objects hidden by the low 

contrast or the non uniform illumination, they must be 

exploited carefully. In presence of a non-uniform illumination 

(see Fig.7 c’), the methods based on statistics and adaptive 

histogram equalization revealed to give the best results, 

otherwise, the morphological based methods seem to be 

sufficient to achieve a good contrast enhancement.  

 

  
                                           a                                       a’ 

 
b 
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b’ 

  
                                     c                                          c’ 

Fig. 7 An example of contrast enhancement, a’, b’ morphological 

methods and c’ a statistics method 

 

Moreover, thresholding was followed by some 

morphological filtering to get smooth boundaries. And 

example of the operations done before the distance map 

computation is given in Fig. 8 

 

 
Fig. 8 An example of all the operations that precede the distance map 

computation, edge preserving smoothing, contrast enhancement, 

thresholding and morphological smoothing 

 

First we tried the gradient, the GVF and also the GGVF [7] 

models on radiographic images for defect delineation. 

However the result was poor, as we have expected. The 

contour evolves till it collapse on the nearest edge of the 

defect as shown in the example of Fig. 9 

 

 
Fig. 9 initial and final contours for gradient GVF and GGVF models 

 

After we tried snakes where we have associated first the 

adaptive pressure force and the gradient forces then the 

adaptive pressure forces and the GVF ones, and at late the 

adaptive pressure forces and the GGVF forces. The results are 

shown below in Fig. 10 the Fig. 11 shows the behavior of the 

model with only the pressure forces, which guide the curve 

near the edge but can not achieve the evolution to fit the 

boundaries. That is why additional forces are required. So, the 

gradient , GVF and GGVF forces attract the curve to the 

boundaries, but the best result seems to be the one where the 

pressure forces are combined with the GGVF ones as shown 

in Fig. 10 .c. The four models had the same initialization but 

the final results are different with an advantage for the 

combination with the GGVF over the others. As a conclusion, 

in addition of less sensitivity to initialization, our model 

makes the snake evolving where the GVF and the GGVF 

snakes stagnate. 

 

 
a 

 
b 

 
c 

Fig. 10 a) gradient forces and the pressure forces model evolution , b) 

GVF forces and pressure forces model evolution , c) GGVF forces 

and pressures forces model evolution 

 

 
Fig. 11 The model evolution only with the adaptive pressure forces 

 
Below we show some examples of weld defect extraction 

from radiographic images with the association of adaptive 

pressure forces and the GGVF ones. The results show a 

successful contour estimation for both cases, with a simple 

initialization consisting of a little circle crossing a part of the 

defects. Despite the relatively complicated with their 

concavities and thin and aligned parts, the proposed snake has 

progressed from the initial contours, by getting closer to the 

real boundaries until fitting the defect shape in the last ones. 

 

 

 

  

 
Fig. 12 The proposed model evolution (GGVF forces and weighted 

pressure one’s combination to drive the model) from the initial 

contour represented as a circle crossing the defect to the final one 

VI. CONCLUSION 

We have described an approach of boundaries extraction of 

weld defects in radiographic images, based on the combination 

of the well known GVF force and an adaptive pressure forces. 
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Experiments on real images have shown the ability of the 

proposed method to give a good estimation of the contours by 

fitting the concavities, and progressing where the GVF snake 

stagnates when used alone.  Moreover, the snake has shown a 

less sensitivity to initialisation than the GVF and its improved 

version GGVF, and more progression speed even in thin 

concavities. 
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