Assessment of Sediment Remediation Potential using Microbial Fuel Cell Technology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32794
Assessment of Sediment Remediation Potential using Microbial Fuel Cell Technology

Authors: S. W. Hong, Y. S. Choi, T. H. Chung, J. H. Song, H. S. Kim

Abstract:

Bio-electrical responses obtained from freshwater sediments by employing microbial fuel cell (MFC) technology were investigated in this experimental study. During the electricity generation, organic matter in the sediment was microbially oxidized under anaerobic conditions with an electrode serving as a terminal electron acceptor. It was found that the sediment organic matter (SOM) associated with electrochemically-active electrodes became more humified, aromatic, and polydispersed, and had a higher average molecular weight, together with the decrease in the quantity of SOM. The alteration of characteristics of the SOM was analogous to that commonly observed in the early stage of SOM diagenetic process (i.e., humification). These findings including an elevation of the sediment redox potential present a possibility of the MFC technology as a new soil/sediment remediation technique based on its potential benefits: non-destructive electricity generation and bioremediation.

Keywords: Anaerobic oxidation, microbial fuel cell, remediation, sediment.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1083245

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984

References:


[1] U. Schröder, "Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency," Phys. Chem. Chem. Phys., vol. 9, no. 21, pp. 2619-2629, Jun. 2007.
[2] B. H. Kim, H. J. Kim, M. S. Hyun, and D. H. Park, "Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens," J. Microbiol. Biotechnol., vol. 9, no. 2, pp. 127-131, Apr. 1999.
[3] S. K. Chaudhuri and D. R. Lovley, "Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells," Nat. Biotechnol., vol. 21, no. 10, pp. 1229-1232, Oct. 2003.
[4] B. E. Logan, C. Murano, K. Scott, N. D. Gray, and I. M. Head, "Electricity generation from cysteine in a microbial fuel cell," Water Res., vol. 39, no. 5, pp. 942-952, Mar. 2005.
[5] D. E. Holmes, J. S. Nicoll, D. R. Bond, and D. R. Lovley, "Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp nov., in electricity production by a marine sediment fuel cell," Appl. Environ. Microbiol., vol. 70, no. 10, pp. 6023-6030, Oct. 2004.
[6] M. J. Cope, "Products of natural burning as a component of the dispersed organic matter of sedimentary rocks," in Organic Maturation Studies and Fossil Fuel Exploration, J. Brooks, Ed. London: Academic Press, 1981, pp. 89-109.
[7] R. V. Tyson, Sedimentary Organic Matter: organic facies and palynofacies. London: Chapman & Hall, 1995.
[8] C. E. Reimers, L. M. Tender, S. Fertig, and W. Wang, "Harvesting energy from the marine sediment-water interface," Environ. Sci. Technol., vol. 35, no. 1, pp. 192-195, Jan. 2001.
[9] D. R. Bond, D. E. Holmes, L. M. Tender, and D. R. Lovley, "Electrode-reducing microorganisms that harvest energy from marine sediments," Science, vol. 295, no. 5554, pp. 483-485, Jan. 2002.
[10] D. H. Loring and R. T. T. Rantala, "Manual for the geochemical analyses of marine-sediments and suspended particulate matter," Earth-Sci. Rev., vol. 32, no. 4, pp. 235-283, Jul. 1992.
[11] N. Senesi and E. Loffredo, "The chemistry of soil organic matter," in Soil Physical Chemistry, D. L. Sparks, Ed. Florida: CRC Press, 1999, pp. 331-332.
[12] D. E. Caldwell, D. R. Korber, and J. R. Lawrence, "Imaging of bacterial-cells by fluorescence exclusion using scanning confocal laser microscopy," J. Microbiol. Methods, vol. 15, no. 4, pp. 249-261, Jun. 1992.
[13] I. S. Chang, H. Moon, O. Bretschger, J. K. Jang, H. I. Park, K. H. Nealson, and B. H. Kim, "Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells," J. Microbiol. Biotechnol., vol. 16, no. 2, pp. 163-177, Feb. 2006.
[14] S. Mathieu and P. Etienne, "Estimation of wastewater biodegradable COD fractions by combining respirometric experiments in various So/Xo ratios," Water Res., vol. 34, no. 4, pp. 1233-1246, Mar. 2000.
[15] S. K. Kim, J. R. Oh, W. J. Shim, D. H. Lee, U. H. Yim, S. H. Hong, Y. B. Shin, and D. S. Lee, "Geographical distribution and accumulation features of organochlorine residues in bivalves from coastal areas of South Korea," Mar. Pollut. Bull., vol. 45, no. Sp. Iss. SI, pp. 268-279, 2002.
[16] L. De Schamphelaire, L. Van den Bossche, H. S. Dang, M. Hofte, N. Boon, K. Rabaey, and W. Werstraete, "Microbial fuel cells generating electricity from rhizodeposits of rice plants," Environ. Sci. Technol., vol. 42, no. 8, pp. 3053-3058, Apr. 2008.
[17] L. Bengtsson and M. Enell, "Chemical analysis," in Handbook of Holocene Palaeoecology and Palaeohydrology, B. E. Berglund, Ed. Chichester: John Wiley & Sons, 1986.
[18] G. J. Farquhar and F. A. Rovers, "Gas production during refuse decomposition," Water Air Soil Pollut., vol. 2, no. 4, pp. 483-495, Dec. 1973.
[19] T. G. Stevenson, Humus chemistry, genesis, composition, and reactions. New York: John Wiley & Sons, Inc., 1982.
[20] G. R. Aiken, D. M. Mcknight, R. L. Wershaw, and P. MacCarthy, Humic substances in soil, sediment, and water, geochemistry, isolation, and characterization. New York: John Wiley & Sons, Inc., 1985.
[21] J. L. Weishaar, G. R. Aiken, B. A. Bergamaschi, M. S. Fram, R. Fujii, and K. Mopper, "Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon," Environ. Sci. Technol., vol. 37, no. 20, pp. 4702-4708, Oct. 2003.
[22] M. D. Krom and E. R. Sholkovitz, "Nature and reactions of dissolved organic matter in the interstitial waters of marine sediments," Geochim. Cosmochim. Acta., vol. 41, no. 11, pp. 1565-1573, Nov. 1977.
[23] Y. P. Chin, G. R. Aiken, and K. M. Danielsen, "Binding of pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity," Environ. Sci. Technol., vol.31, no. 6, pp. 1630-1635, Jun. 1997.
[24] R. M. Allen and H. P. Bennetto, "Microbial fuel-cells: Electricity production from carbohydrates," Appl. Biochem. Biotechnol., vol. 39-40, no. 1, pp. 27-40, Sep. 1993.
[25] S. E. Oh and B. E. Logan, "Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells," Appl. Microbiol. Biotechnol., vol. 70, no. 2, pp. 162-169, Mar. 2006.
[26] S. H. Zinder, T. Anguish, and S. C. Cardwell, "Selective inhibition by 2-bromoethanesulfonate of methanogenesis from acetate in a thermophilic anaerobic digestor," Appl. Environ. Microbiol., vol. 47, no. 6, pp. 1343-1345, Jun. 1984.
[27] F. H. Chapelle and D. R. Lovley, "Competitive-exclusion of sulfate reduction by Fe(III)-reducing bacteria: a mechanism for producing discrete zones of high-iron ground water," Ground Water, vol. 30, no. 1, pp. 29-36, Jan. 1992.
[28] C. E. Milliken and H. D. May, "Sustained generation of electricity by the spore-forming, Gram-positive, Desulfitobacterium hafniense strain DCB2," Appl. Microbiol. Biotechnol., vol. 73, no. 5, pp. 1180-1189, Jan. 2007.
[29] B. H. Kim, H. S. Park, H. J. Kim, G. T. Kim, I. S. Chang, J. Lee, and N. T. Phung, "Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell," Appl. Microbiol. Biotechnol., vol. 63, no. 6, pp. 672-681, Feb. 2004.