WASET
	%0 Journal Article
	%A K. Krishnaprasad and  Raghu V. Prakash
	%D 2009
	%J International Journal of Mechanical and Mechatronics Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 32, 2009
	%T Fatigue Crack Growth Behavior in Dissimilar Metal Weldment of Stainless Steel and Carbon Steel
	%U https://publications.waset.org/pdf/14546
	%V 32
	%X Constant amplitude fatigue crack growth (FCG) tests
were performed on dissimilar metal welded plates of Type 316L
Stainless Steel (SS) and IS 2062 Grade A Carbon steel (CS). The
plates were welded by TIG welding using SS E309 as electrode. FCG
tests were carried on the Side Edge Notch Tension (SENT)
specimens of 5 mm thickness, with crack initiator (notch) at base
metal region (BM), weld metal region (WM) and heat affected zones
(HAZ). The tests were performed at a test frequency of 10 Hz and at
load ratios (R) of 0.1 & 0.6. FCG rate was found to increase with
stress ratio for weld metals and base metals, where as in case of
HAZ, FCG rates were almost equal at high ΔK. FCG rate of HAZ of
stainless steel was found to be lowest at low and high ΔK. At
intermediate ΔK, WM showed the lowest FCG rate. CS showed
higher crack growth rate at all ΔK. However, the scatter band of data
was found to be narrow. Fracture toughness (Kc) was found to vary
in different locations of weldments. Kc was found lowest for the
weldment and highest for HAZ of stainless steel. A novel method of
characterizing the FCG behavior using an Infrared thermography
(IRT) camera was attempted. By monitoring the temperature rise at
the fast moving crack tip region, the amount of plastic deformation
was estimated.
	%P 1016 - 1022