
 

 

  
Abstract—In the recent past, there has been an increasing interest 

in applying evolutionary methods to Knowledge Discovery in 
Databases (KDD) and a number of successful applications of Genetic 
Algorithms (GA) and Genetic Programming (GP) to KDD have been 
demonstrated. The most predominant representation of the 
discovered knowledge is the standard Production Rules (PRs) in the 
form If P Then D. The PRs, however, are unable to handle 
exceptions and do not exhibit variable precision. The Censored 
Production Rules (CPRs), an extension of PRs, were proposed by 
Michalski & Winston that exhibit variable precision and supports an 
efficient mechanism for handling exceptions. A CPR is an 
augmented production rule of the form: 
If P Then D Unless C, where C (Censor) is an exception to the rule.   
   Such rules are employed in situations, in which the conditional 
statement ‘If P Then D’ holds frequently and the assertion C holds 
rarely. By using a rule of this type we are free to ignore the exception 
conditions, when the resources needed to establish its presence are 
tight or there is simply no information available as to whether it 
holds or not. Thus, the ‘If P Then D’ part of the CPR expresses 
important information, while the Unless C part acts only as a switch 
and changes the polarity of D to ~D.  
This paper presents a classification algorithm based on evolutionary 
approach that discovers comprehensible rules with exceptions in the 
form of CPRs.  

The proposed approach has flexible chromosome encoding, where 
each chromosome corresponds to a CPR. Appropriate genetic 
operators are suggested and a fitness function is proposed that 
incorporates the basic constraints on CPRs. Experimental results are 
presented to demonstrate the performance of the proposed algorithm. 

 
Keywords—Censored Production Rule, Data Mining, Machine 

Learning, Evolutionary Algorithms.  

I. INTRODUCTION 
VER the last decade there has been an increasing amount 
of research in the field of automated learning and 

discovery, in general, and Knowledge Discovery in Databases 
(KDD), in particular. KDD can be defined as the nontrivial 
process of identifying valid, novel, potentially useful, and 
ultimately understandable patterns in data [8]. 

Data Mining is the process of discovering interesting 
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knowledge from large amounts of data [14], which can be 
done using different kinds of algorithms depending mainly on 
the application domain and the user interest. 

Genetic Algorithms (GAs) are based on Darwinian natural 
selection and Mendelian genetics, in which each point in the 
search space is a string called a chromosome that represents a 
possible solution. This approach requires a population of 
chromosomes representing a combination of features from the 
set of features and requires a cost function that calculates each 
chromosome’s Fitness (this function is called evaluation 
function or Fitness function). The algorithm performs 
optimization by manipulating a finite population of 
chromosomes. In each generation, the GA creates a set of new 
chromosomes by crossover, inversion and mutation, which 
correlate to processes in natural reproduction [2], [13]. 

There has been increasing interest in applying evolutionary 
computation methods as data mining tasks to KDD [10], [19] 
[29]. A number of successful applications of GA [2], [6], [7], 
[9], [26], [28] and, lately, Genetic Programming (GP) [3], [4], 
[5], [27] to KDD have been reported in the literature.  

The most predominant representation of the discovered 
knowledge is the standard Production Rules (PRs) in the form 
If P Then D. The PRs, however, are unable to handle 
exceptions and do not exhibit variable precision [1]. 
Exceptions, which focus on a very small portion of a dataset, 
have been ignored or discarded as noise in machine learning, 
but the goal of KDD is broader and it is always interesting to 
discover exceptions, as they challenge the existing knowledge 
and often led to the growth of knowledge in new directions 
[25].  

In the past, some efforts have been made toward 
considering rules with exceptions for knowledge 
acquisition/discovery.   Ripple-Down Rule (RDR) with 
exceptions for incremental development of a Knowledge-
Based System (KBS) is considered in [12]. Learning rules 
with local exceptions using RDR is discussed in [18] that 
allow us to deal with exceptions for each rule separately by 
introducing exception rules, exception rules for each 
exception rule, etc. up to a constant depth. In [11] Exception 
Directed Acyclic Graph (EDAG) as a knowledge structure is 
presented that subsumes trees and rules but can be 
substantially more compact. An intuitive representation of 
decision tree using general rules and exceptions that reduce 
the complexity of the discovered knowledge substantially is 
discussed in [20]. A unified algorithm is given in [25] for 
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undirected discovery of exception rules. A method for mining 
exception rule is proposed by [16], which is based on a 
measure that estimates interestingness of discovered rules. 

As an extension of PR, Michalski and Winston [21] have 
suggested Censored Production Rule (CPR) as an underlying 
representational and computational mechanism to enable logic 
based systems to exhibit variable precision, in which certainty 
varies, while specificity stays constant. A CPR has the form If 
P Then D Unless C, where C (censor) is the exception 
condition. Such rules are employed in situations, in which the 
conditional statement ‘If P Then D’ holds frequently and the 
assertion C holds rarely. By using a rule of this type we are 
free to ignore the censor (exception) conditions, when the 
resources needed to establish its presence are tight or there is 
simply no information available as to whether it holds or does 
not hold.  As time permits, the censor condition C is evaluated 
establishing the conclusion D with higher certainty, if C does 
not hold or simply changing the polarity of D to ~D if C holds  
For example, the following rule might be used to express the 
fact that I read the paper before going to work unless I 
oversleep, which occurs rarely [17]: 

If   Weekday-Morning Then Read-Paper Unless Oversleep. 
A CPR may have more than one censor conditions, say, C1, 

C2, ... Cn and is denoted as: 
If  P  Then D Unless (C1 ∨ C2 ∨…∨ Cn). 
 
For example, “If   Bird Then Fly Unless (Penguin ∨ 

broken-wings ∨ sick ∨ dead)”.  
In this paper, we have presented a classification algorithm 

based on evolutionary approach for the automated discovery 
of comprehensible rules with exception in the form of CPRs.  

II. CENSORED PRODUCTION RULES (CPRS) 
Let us now give a more quantitative definition of a CPR: 
                                  P → D ⎣ C,                                       (1)      
                             
where P is a premise, D is a decision and C is a censor. 

Although the unless operator, ⎣, is logically equivalent to the 
commutative exclusive-or operator, the Unless operator has an 
expositive aspect, which is not commutative. In order to 
capture the asymmetry precisely, let us associate two 
parameters, γ1 and γ2, with rule (1) 

                                 P →D ⎣ C: γ1, γ2.                               (2) 
 
Both γ1 and γ2 are point probabilities, one indicating the 

strength of the relationship between P and D and the other 
between P and C.  Now, consider the following sets: Ω is a 
finite sample of events; ΩP is the set of events, for which P 
holds; ΩPD is the subset of events, for which both P and D 
hold; ΩPC is a subset of events for, which both P and C hold 
[21]. 

Given these sets, the parameters γ1 and γ2 are defined as 
follows: 
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where |Ωi|  denotes the cardinality of  Ωi. Also, we assume 
that ΩD ∩ ΩC = ∅ and ΩD ∪ ΩC = ΩP, thus Pr [P⎪D] + Pr 
[C⎪P] = 1. The main constraint on the CPR is 

                                  γ1 >> γ2                                             (4)  
                                                             
To understand the implication of CPR, Michalaski and 

Winston [21] presented a quantitaive definition for it, where 
two parameters γ  and δ have been introduced. A CPR is then 
written: 

                            P→D ⎣ (C1 ∨ UNK): γ, δ .                    (5) 
The symbol UNK represents a disjunction of unknown 

conditions that could block the inference of D from P.  Where 
γ = Pr [D⎪P], certainty of P→D when it is not known whether 
(C1 ∨ UNK) holds. The implication P→D   is certainty 1 when 
C1 ∨ UNK is known to be false. Thus, the parameter γ is 
equivalent to the a priori certainty that none of the censors 
hold. When δ =Pr [D⎪P& ¬C1], it is the certainty that P→D   
when ¬ C1 is true. This is equivalent to the certainty that there 
is no implicit part of the censor that can hold when ¬ C1 is 
true.  

Obviously, the a priori certainty of ¬ (C1 ∨ UNK) must be 
equal to or smaller than the a priori certainty that ¬UNK. 
Therefore, γ <= δ . Note that δ  = 1 if it is certain that there 
are no conditions in the censor other than C1 [15].                                        

For example, consider the CPR: 
  Sunday→ John works in the yard ⎣ weather is bad         (6)   
                                                                                   
                             
 
 
The condition γ1 >> γ2 means the ratio of Sundays when 

John worked in the yard to all Sundays >> the ratio of 
Sundays with bad weather to all Sundays [21].  

It is to be noted that PR is a special case of a CPR, when the 
Unless part is absent. 

III. APPLYING GA TO CPR DISCOVERY 
In this section an evolutionary approach is presented for the 
automated discovery of rules with exceptions using CPR as 
the underlying knowledge representation. The current version 
of the system handles only categorical attributes and also the 
proposed algorithm cannot cope with the missing values. That 
is why, in each dataset the few instances that contained 
missing values were simply removed. 

γ1 γ2  
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A. Individual Representation 
Suppose there are n predicting attributes and a single goal 

(class) attribute in the data being mined. A chromosome 
(sequence of genes) is divided into three parts: If part (n genes 
corresponding to predicting attributes) consisting of a 
conjunction of conditions on the values of the predicting 
attributes, Then part (single goal attribute) representing 
decision and Unless part (n genes corresponding to predicting 
attributes) consisting of a disjunction of conditions on the 
values of the predicting attributes representing censors. 
Accordingly, we have fixed length (2n + 1), chromosome 
representation. It is to be noted that any of the n predicting 
attributes (one or more) can form conditions in the If part and 
similarly any of the n predicting attributes (zero or more) can 
form censor (exception) conditions in the Unless part. Further, 
for any rule the set of attributes forming If part and the set of 
attributes forming Unless part would be disjoint i.e., (set of 
attributes present in the If part) ∩ ( set of attributes present in 
the Unless part)= Ø. 

The n predicting attributes are represented as, Atr1, 
Atr2,….,Atri,…,Atrn. Supposing that the ith attribute Atri has 
xi values, the set of values corresponding to Atri is denoted as 
Set-Val-Atri= {Val-Atri1, Val-Atri2,……, Val-Atrik ,…..,Val-
Atrixi}. 

The condition (If part / Unless part) corresponding to the 
ith attribute Atri would be denoted as Atri= Val-Atri, where 
Val-Atri ∈  Set-Val-Atri. 

 The genes are positional i.e, the first gene represents the 
first attribute the second gene represents the second attribute 
and so on. 

The structure of chromosome is shown in Fig.1. 

 
The encoding corresponding to the  kth  value (Val-Atrik) of 

Atri is, a sequence of xi (number of values of Atri) bits such 
that Val-Atrik is set to 1 and   the rest  bits are all set to 0 as 
shown in Fig.2. 

Val-Atri1 Val-Atri2 … Val-Atrik … Val-Atrixi 
     0      0 …      1 …     0 

Fig. 2 The encoding of predicting attribute Atri 
 
In case the ith attribute Atri is absent in the conditional part, 

all the xi bits are set to zero. 
A two-valued goal attribute can be encoded as single bit (1 

representing class A and 0 representing class B). 
Each gene corresponds to one condition in the If part or one 

censor condition in the Unless part of a rule. Thus, the entire 
chromosome (individual) corresponding to a single CPR, If 
conditions Then decision Unless censors, is encoded as 
shown in Fig.3. 

 

Note that the above encoding is quite flexible with respect 
to the length of the rules. A “traditional” GA is very limited in 
this aspect, since it can only cope with fixed-length rules. In 
this proposed algorithm, although each chromosome has a 
fixed length, the genes are “interpreted” in such a way that the 
individual phenotype (the rule) has a variable length. Hence, 
different individuals correspond to rules with different number 
of conditions and different number of censor conditions. This 
kind of representation gives a lot of flexibility to the rules 
being discovered [9]. 

As an example, consider object classification training set 
(Table I) with three predicting attributes as shown below: 
 

Attribute Possible values 
Bird Yes 
Kiwi No, Yes 
Dead No, Yes 

 
and there is one goal attribute: 

Attribute Possible values 
Decision Fly, ~Fly 

 
Corresponding to the above training dataset, a CPR:  
If Bird = Yes Then Decision = Fly Unless Kiwi = Yes 

would be encoded as: 
 Bird        Kiwi       Dead    Decision   Bird      Kiwi      Dead 

Gene1 Gene2 Gene3 Class Gene1 Gene2 Gene3 
1 0  0 0   0 1 0   0 1   0 0   0 
and a CPR: 
If Bird = Yes Then Decision = Fly Unless (Kiwi = Yes ∨ 

Dead =Yes) would be encoded as:  
  Bird       Kiwi      Dead     Decision   Bird      Kiwi       Dead 

Gene1 Gene2 Gene3 Class Gene1 Gene2 Gene3 
1 0  0 0   0 1 0   0 1   0 1   0 

Notice that any attribute present will have exactly one bit set 
to1 and rest all bits are 0 in the corresponding gene and any 
attribute absent in the rule will have all the bits zero in the 
corresponding gene. 

B. Genetic Operators 
We used conventional genetic operators of selection and 

crossover. More precisely, we used fitness proportional 
selection and one-point crossover, with probability 0.7. We 
also used an elitist reproduction strategy, where the best 
individual of each generation was passed unaltered to the next 
generation. 

Note that crossover points can fall only between genes and 
not inside a gene. Hence, crossover swaps entire rule 
conditions between individuals, but it cannot produce new 
rule conditions. The mutation operator accomplishes the 
creation of new rule conditions. 

Mutation is an operator that acts on a single individual at a 
time. Mutation replaces the value of a gene with a randomly 

            If part                                   Then  part                          Unless part 
n predicting attributes single goal attribute n predicting attributes 

Fig. 1 The structure of chromosome 

Gene1 … Gene i … Gene n Class  Gene1 … Gene i  … Gene n 

Val-Atr1 … Val-Atri … Val-Atrn 0/1 Val-Atr1 … Val-Atri … Val-Atrn 

Fig. 3 Chromosome encoding 
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generated value, which belongs to the domain of the attribute. 
We developed three mutation operators tailored for our 
chromosome representation, namely insert, swapping and 
dropping. We used mutation rates of 0.1 for reach kind of 
mutation.  

The insert mutation randomly chooses Val-Atri in the If 
part or Val-Atrj in the Unless part and replaces it by a 
randomly chosen value from Set-Val-Atri or Set-Val-Atrj in If 
and Unless part, respectively. While applying the mutation 
operator, insert to the If part or Unless part, it must be ensured 
that the mutated chromosome is legal i.e., the condition (set of 
attributes present in the If part) ∩ (set of attributes present in 
the Unless part) = Ø is satisfied. In case the above condition is 
not satisfied, the produced mutated chromosome is rejected as 
illegal and the operator insert is applied again to produce legal 
mutant. 

The swapping mutation swaps randomly chosen Val-Atri 
from the If part and Val-Atrj from the Unless part. 

The dropping mutation randomly deletes (replace 1 by 0) a 
condition in the If part or a censor condition in the Unless 
part.  

C. Fitness Function 
The most difficult and most important concept of 

evolutionary algorithm is the Fitness function. It varies greatly 
from one type of problem to another. Clearly many criteria are 
used to quantify the quality or, Fitness, of a rule over the 
database. Some of these criteria are highly qualitative and in 
some cases subjective. However, in the context of genetic 
search we must formulate a single numerical quantity that 
encapsulates the desirable features [22]. 

The Fitness function to evaluate each individual CPR takes 
into account the logical interpretation of the rule and the basic 
constraint γ1 >> γ2.                                                                             

     Under the Dempster-Shafer interpretation of CPR, four 
belief values are associated with each CPR [23],[24]: 

     P→ D ⎣ C:α ,β, γ, δ                                                     (7)                                                       
such that 
i. P ∧ ¬C → D        
ii.           P ∧ C → ¬D       
iii.          P → D                  
iv.          P → ¬D               
Four indicators α, β, γ  and δ  corresponding to rule (i), 

(ii), (iii) and (iv), respectively, are computed as shown below: 

 
And the basic constraint on CPR would be:  

)12(21 P

CP

P

DP ∧
=>>

∧
= γγ

where γ1 + γ2 =1 (when all the censor conditions C are 
known).  

From the equations (8),(9),(10),(11) and (12) we deduce 
that:  

• If γ1 ≥ 0.75 – threshold defined by user- (i.e., γ1 >> 
γ2 is satisfied), then the discovered rule is 
considered as CPR. 

• If γ1 <0.75 (i.e., γ1 >> γ2 is not satisfied), then the 
discovered rule cannot be designated as CPR. 
However, the discovered rule is a Production Rule 
with Exceptions (PRE). It is to be noted that these 
exception conditions are not censors and, 
therefore, cannot be ignored under resource 
constraints and must always be evaluated, while 
reasoning with such rules. 

Finally, the Fitness function is defined as under: 

 
 
Also, the proposed algorithm would generate standard PRs, 

P → D & P → ¬D with the accuracy γ  and δ , respectively, 
as Fitness. 

Note that the Fitness function will produce values in the 
range [0..1] and the goal is to maximize the value. 

As an illustration of the Fitness function, consider a CPR: 
If Bird=Yes Then Decision = Fly Unless Kiwi=Yes  
and the training dataset for object classification given in 

Table I. 

 
 

First of all the values of γ1 and γ2 are computed as under: 

111.0
9
1

778.0
9
7

2

1

==
=

=∧=
=

∧
=

==
=

=∧=
=

∧
==

YesBird
YesKiwiYesBird

P
CP

YesBird
FlyDecisionYesBird

P
DP

γ

γγ
 

Clearly, the constraint on the CPR, γ1  >> γ2 is satisfied   
(0.778 >> 0.111) and, therefore, the above CPR is valid. 

TABLE I 
OBJECT CLASSIFICATION TRAINING SET 

No. Bird Kiwi Dead Decision 

1 Yes No No Fly 
2 Yes No No Fly 
3 Yes No No Fly 
4 Yes No No Fly 
5 Yes No Yes ~ Fly 
6 Yes No No Fly 
7 Yes No No Fly 
8 Yes No No Fly 
9 Yes Yes 

 
No ~ Fly 

 

., 

., 
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Next, the Fitness (α) is computed as under: 
 

875.0
8
7

==
=∧=

=∧=∧=
=

¬∧
∧¬∧

==

NoKiwiYesBird
FlyDecisionNoKiwiYesBird

CP
DCP

Fitness α

 

IV. EXPERIMENTAL RESULTS 
Each Evolutionary Algorithm run consisted of a population 

of 40 individuals evolving during 50 generations. The 
proposed algorithm was terminated when the best Fitness did 
not change continually throughout 10 generations. The 
performance of the proposed algorithm on different datasets is 
demonstrated below: 

Example 1: Let us consider the training dataset for object 
classification given in Table II. 

 
TABLE II 

OBJECT CLASSIFICATION TRAINING SET (BIRD) 
No. Bird Kiwi Dead Broken-Wings Decision 

1 Yes No No No Fly 
2 Yes No No No Fly 
3 Yes No No No Fly 
4 Yes No No No Fly 
5 Yes No No No Fly 
6 Yes No No No Fly 
7 Yes No No No Fly 
8 Yes No No No Fly 
9 Yes No No No Fly 
10 Yes No No No Fly 
11 Yes No No No Fly 
12 Yes No No No Fly 
13 Yes No No No Fly 
14 Yes No No No Fly 
15 Yes No No No Fly 
16 Yes No No No Fly 
17 Yes No No No Fly 
18 Yes No No No Fly 
19 Yes No No No Fly 
20 Yes No No No Fly 
21 Yes No No No Fly 
22 Yes No No No Fly 
23 Yes No No No Fly 
24 Yes No No No Fly 
25 Yes No No No Fly 
26 Yes No No No Fly 
27 Yes No No No Fly 
28 Yes No No No Fly 
29 Yes No No No Fly 
30 Yes No No No Fly 
31 Yes Yes No No ~Fly 
32 Yes No No Yes ~Fly 
33 Yes No Yes No ~Fly 
34 Yes Yes Yes No ~Fly 
35 Yes Yes No Yes ~Fly 
36 Yes No Yes Yes ~Fly 
37 Yes Yes Yes Yes ~Fly 

 The proposed algorithm discovered four rules shown in Table 
III. 

Notice that the first three rules (Rule1 & Rule2 & Rule3) 
satisfy the constraint γ1 >>γ2 and are designated as CPRs. But 
the Rule4 does not satisfy the condition γ1 >>γ2 and, therefore, 
cannot be designated as CPR. However, this rule can be 
considered as PRE.  

 
Example 2: This experiment was carried out on the Monk-

1 dataset [30]. This dataset has 432 examples, 6 predicting 
attributes and a goal attribute, which can take on 2 classes. 
The predicting attributes were nominal. 

In this case, six CPRs and three PRs are generated as in 
Table IV. 

V. CONCLUSIONS AND FUTURE WORK 
In the present work, an evolutionary approach is proposed 

for the discovery of Censored Production Rules (CPRs) that 
can efficiently handle exceptions and deal with uncertain, 
incomplete and imprecise knowledge with resource 
constraints. The proposed scheme has flexible chromosome 
encoding and appropriate crossover and mutation operators 
are suggested. Suitable mutation operators are designed in the 
form of inset, swapping and dropping. Keeping in the view 
the basic constraints on CPRs, appropriate Fitness functions 
are formulated corresponding to different forms of the 
discovered rules i.e, PRs, CPRs and PREs. 

Experimental results have demonstrated the effectiveness of 
the evolutionary scheme proposed in providing the user with  
compact and comprehensible classification rules in the form 
of PRs & CPRs. 

In case of data being mined does not satisfy the constraints 
on the CPRs, the proposed algorithm would still discover 
PREs. However, in the later case the discovered rules would 
not support reasoning under time constraint and, therefore, all 
the exception conditions need to be evaluated during 
reasoning process. 

The current version of the system handles only discrete 
attributes. Future enhancement will allow the use of 
continuous attributes. One of the most important future 
research directions would be the discovery of Hierarchical 
Censored Production Rules (HCPRs) [1] from large datasets 
using evolutionary algorithm. 

 
 

TABLE III 
RESULT FROM THE BIRD DATASET 

No
. 

Discovered Rules γ1 γ2 Fitness 

1 If Bird =Yes Then Decision= Fly Unless Kiwi =Yes   (CPR) 0.811 0.108 0.909 
2 If Bird = Yes Then Decision= Fly Unless (Kiwi =Yes ∨ Dead =Yes)   (CPR) 0.811 0.162 0.968 
3 If Bird = Yes Then Decision= Fly Unless (Kiwi =Yes ∨ Dead =Yes ∨ Broken-Wings =Yes)    (CPR) 0.811 0.189 1.000 
4 If Bird = Yes Then Decision= ¬Fly Unless ¬(Kiwi =Yes ∨ Dead =Yes ∨ Broken-Wings =Yes)    (PRE) 0.189 0.811 1.000 

 
 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:10, 2007 

3234International Scholarly and Scientific Research & Innovation 1(10) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

10
, 2

00
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

41
69

/p
df



 

 

TABLE IV 
RESULT FROM THE MONK-1 DATASET 

No.                                                 Discovered Rules γ1 γ2 Fitness 

1 If a1= 1 ∧ a2 = 2 Then class =0 Unless a5 = 1    (CPR) 0.750 0.250 1.000 
2 If a1= 1 ∧ a2 = 3 Then class =0 Unless a5 = 1    (CPR) 0.750 0.250 1.000 
3 If a1= 2 ∧ a2 = 1 Then class =0 Unless a5 = 1    (CPR) 0.750 0.250 1.000 
4 If a1= 2 ∧ a2 = 3 Then class =0 Unless a5 = 1    (CPR) 0.750 0.250 1.000 

5 If a1= 3 ∧ a2 = 1 Then class =0 Unless a5 = 1    (CPR) 0.750 0.250 1.000 

6 If a1= 3 ∧ a2 = 2 Then class =0 Unless a5 = 1    (CPR) 0.750 0.250 1.000 

7 If a1= 1 ∧ a2 = 1 Then class =1       (PR) …. …. 1.000 

8 If a1= 2 ∧ a2 = 2 Then class =1       (PR) ….. …. 1.000 

9 If a1= 3 ∧ a2 = 3 Then class =1       (PR) …. …. 1.000 
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