WASET
	%0 Journal Article
	%A V. Ngamaramvaranggul and  S. Thenissara
	%D 2010
	%J International Journal of Physical and Mathematical Sciences
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 40, 2010
	%T The Contraction Point for Phan-Thien/Tanner Model of Tube-Tooling Wire-Coating Flow
	%U https://publications.waset.org/pdf/14037
	%V 40
	%X The simulation of extrusion process is studied widely
in order to both increase products and improve quality, with broad
application in wire coating. The annular tube-tooling extrusion was
set up by a model that is termed as Navier-Stokes equation in
addition to a rheological model of differential form based on singlemode
exponential Phan-Thien/Tanner constitutive equation in a twodimensional
cylindrical coordinate system for predicting the
contraction point of the polymer melt beyond the die. Numerical
solutions are sought through semi-implicit Taylor-Galerkin pressurecorrection
finite element scheme. The investigation was focused on
incompressible creeping flow with long relaxation time in terms of
Weissenberg numbers up to 200. The isothermal case was considered
with surface tension effect on free surface in extrudate flow and no
slip at die wall. The Stream Line Upwind Petrov-Galerkin has been
proposed to stabilize solution. The structure of mesh after die exit
was adjusted following prediction of both top and bottom free
surfaces so as to keep the location of contraction point around one
unit length which is close to experimental results. The simulation of
extrusion process is studied widely in order to both increase products
and improve quality, with broad application in wire coating. The
annular tube-tooling extrusion was set up by a model that is termed
as Navier-Stokes equation in addition to a rheological model of
differential form based on single-mode exponential Phan-
Thien/Tanner constitutive equation in a two-dimensional cylindrical
coordinate system for predicting the contraction point of the polymer
melt beyond the die. Numerical solutions are sought through semiimplicit
Taylor-Galerkin pressure-correction finite element scheme.
The investigation was focused on incompressible creeping flow with
long relaxation time in terms of Weissenberg numbers up to 200. The
isothermal case was considered with surface tension effect on free
surface in extrudate flow and no slip at die wall. The Stream Line
Upwind Petrov-Galerkin has been proposed to stabilize solution. The
structure of mesh after die exit was adjusted following prediction of
both top and bottom free surfaces so as to keep the location of
contraction point around one unit length which is close to
experimental results.
	%P 483 - 489