Effects of Formic Acid on the Chemical State and Morphology of As-synthesized and Annealed ZnO Films
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Effects of Formic Acid on the Chemical State and Morphology of As-synthesized and Annealed ZnO Films

Authors: Chueh-Jung Huang, Chia-Hung Li, Hsueh-Lung Wang, Tsun-Nan Lin

Abstract:

Zinc oxide thin films with various microstructures were grown on substrates by using HCOOH-sols. The reaction mechanism of the sol system was investigated by performing an XPS analysis of as-synthesized films, due to the products of hydrolysis and condensation in the sol system contributing to the chemical state of the as-synthesized films. The chemical structures of the assynthesized films related to the microstructures of the final annealed films were also studied. The results of the Zn 2p3/2, C 1s and O1s XPS patterns indicate that the hydrolysis reaction in the sol system is strongly influenced by the HCOOH agent. The results of XRD and FE-SEM demonstrated the microstructures of the annealed films are related to the content of hydrolyzed zinc hydrate (Zn-OH) species present, and that content of the Zn-OH species in the sol system increases the HCOOH adding, and these Zn-OH species existing in the sol phase are responsible for large ZnO crystallites in the final annealed films.

Keywords: zinc oxide, hydrolysis catalyst, zinc acetate source, formic acid.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1081932

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605

References:


[1] J. Bao, Z. Liu, Y. Zhang, and N. Tsubaki, Catal. Commun., 9, 913 (2008).
[2] X. Zhou, T. Jiang, J. Zhang, X. Wang, and Z. Zhu, Sensor. Actua. B, 123, 299 (2007).
[3] H. Matsui, H. Saeki, H, Tabata, and T. Kawai, J. Electrochem. Soc., 150 (9), G508 (2003).
[4] J. H. Lee, and B. O. Park, Thin Solid Films, 426, 94 (2003).
[5] M. Izaki, and Y. Saijo, J. Electrochem. Soc., 150 (2), C73 (2003).
[6] M. Izaki, and J. Katayama, J. Electrochem. Soc., 147 (1), 210 (2000).
[7] K. Sakurai, T. Kubo, D. Kajita, T. Tanabe, H. Takasu, and S. Fujita, Jap. J. Appl. Phys., Patr 2, 39, L1146 (2000).
[8] K. Yu, Z. G. Jin, X. Liu, J. Zhao, and J. Y. Feng, Appl. Surf. Sci., 253, 4072 (2007).
[9] M. de la L. Olvera, H. G├│mez, and A. Maldonado, Sol. Energy Mater. Sol. Cells, 91, 1449 (2007).
[10] M. Yang, D. J. Wang, Y. H. Lin, Z. H. Li, and Q. L. Zhang, Mater. Chem. Phys., 88, 333 (2004).
[11] S. Q. Chen, J. Zhang, X. Feng, X. H. Wang, L. Q. Luo, Y. L. Shi, Q. S. Xue, C. Wang, J. H. Zhu, and Z. Q. Zhu, Appl. Surf. Sc., 241, 384 (2005).
[12] L. Znaidi, G. J. A. A. Soler Illia, S. Benyahia, C. Sanchez, and A. V. Kanaev, Thin Solid Films, 428, 257 (2003).
[13] Y. H. Cheng, L. K. Teh, Y. Y. Tay, H. S. Park, C. C. Wong, and S. Li, Thin Solid Films, 504, 41 (2006)
[14] J. Puetz, F. N. Chalvet, and M. A. Aegerter, Thin Solid Films, 442, 53 (2003).
[15] T. Du, and O. J. Ilegbusi, J. Mater. Sci., 39, 6105 (2004).
[16] J. H. Lee, K. H. Ko, and B. O. Park, J. Cryst. Growth, 247, 119 (2003).
[17] C. D. Bojorge, H. R. Cánepa, U. E. Gilabert, D. Silva, E. A. Dalchiele, and R. E. Marotti, J. Mater. Sci.: Mater. Electron., 18, 1119 (2007).
[18] K. M. Lin, and P. J. Tsai, Mater. Sci. Eng. B, 139, 81 (2007).
[19] M. Ortega-López, A. Avila-García, M. L. Albor-Aguilera, and V. M. S. Resendiz, Mater. Res. Bullet., 38, 1241 (2003).
[20] L. Armelao, M. Fabrizio, S. Gialanella, and F. Zordan, Thin Solid Films, 394, 90 (2001).
[21] M. de la L. Olvera, A. Maldonado, R. Asomoza, O. Solorza, and D. R. Acosta, Thin Solid Films, 394, 242 (2001).
[22] C. J. Huang, M. C. Chiu, H. C. Yao, D. C. Tsai, and F. S. Shieu, J. Electrochem. Soc. 155 (12), K211 (2008).
[23] G. Machado, D. N. Guerra, D. Leinen, J. R. Ramos-Barrado, R. E. Marotti, and E. A. Dalchiele, Thin Solid Films, 490, 124 (2005).
[24] C. J. Huang, J. J. Lin, and F. S. Shieu, Jpn. J. Appl. Phys., 44 (8) 6332 (2005).