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Abstract—In this paper, applying He’s energy balance method to
determine frequency formulation relations of nonlinear oscillators
with discontinuous term or fractional potential. By calculation and
computer simulations, compared with the exact solutions show that
the results obtained are of high accuracy.
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I. INTRODUCTION

N this paper, we considers the following generalized non-
linear oscillators

'’ + f(uw)u =0, u(0) = A, u'(0) =0, )

where f(u) > 0 is a known function of w.

In case that there exists no small parameter in the equation,
the traditional perturbation methods cannot be applied directly
to (1). Hereby, we will give two examples to show how to solve
the problems of nonlinear oscillators with discontinuous terms
or fractional potential by a new variational approach proposed
by He’s energy balance method, which is an easy, effective
and convenient mathematical tool for nonlinear oscillators.

II. HE’S ENERGY BALANCE METHOD

Firstly, we consider the following nonlinear oscillator with
discontinuous term

u” + au® + bu+ culu| =0, u(0) = A, v (0)=0. (2
Using the semi-inverse method [1], the variational principle
of equation (2) can be easily obtained:
0
Lo Loy 1,5 1 3
/T [ 2u +4au +2bu 3ClL dt

J(u)

T
z 1 1 1 1
+/O {— iua + ZGU4 + §bu2 + Scu?’} dt

T

2 Lo 1oy 1.5
- - ~b

/g[ 2u+4au—|—2u

+sgn(u);cu3] dt. 3)

The Hamiltonian of equation (2), therefore, can be written in
the form
1 1 1 1
Eu/z + Eau4 + §bu2 + sgn(u)gcu

Loja Lo 1 s
4aA +2bA +sgn(A)3cA,

H = 3

Meng Hu and Lili Wang are with the Department of Mathematics, Anyang
Normal University, Anyang, Henan 455000, People’s Republic of China.
E-mail address: humeng2001 @ 126.com.

International Scholarly and Scientific Research & Innovation 6(8) 2012

1133

that is
1 1 1 1 5 1 1
au’z + ZGU4 + ibu2 + sgn(u)gcu3 - ZaA4 - ibAQ
1 .
—sgn(A)gcA3 =0. “)

We use the following trial function to determine the angular
frequency w:

u = A coswt. 5)

Substituting (5) into (4), we obtain the following residual

1 1 1
R(t) = §A2w2 sin? wt + ZaA4 cos* wt + §bA2 cos? wt
1

+sgn(A coswt) §CA3 cos® wt
1 1 1

fZaA4 - 5bA2 — sgn(A)gcAB‘

We set
T 2
/ R(t)coswtdt =0, T = il
0 w

to determine the w — A relationship, which reads

, 13 16 — 3

w® =
10 8

aA? + ( )cA+b,

then

16_37T)cA+b]2. (6)

8

13
w[loaA +(

Therefore, we can obtain the following periodic solution

1
13 16 — 3 2
u(t) = Acos | | —ad® + ( 7T)cA—Q—b t].
10 8
To illustrate the accuracy of the obtained results, we give
an example as follows:
In case a = 0,b = 0, equation (1) becomes

v’ + culul =0, u(0) = A, v/(0) =0,

1
16-37)2¢3 A3, its exact frequency
1S Wep = 0.921318¢2 A2. Therefore its accuracy reaches

0.0088. The above result is of high accuracy.

its frequency reads w = (

Secondly, we consider another nonlinear oscillator of the
following form

W+ aun + butt = 0, u(0) = A, v/ (0) = 0. (7
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Using the semi-inverse method [1], the variational principle
of equation (7) can be easily obtained:

J(u) =

The Hamiltonian of equation (7), therefore, can be written in
the form

1 am m+1 b
H = —y? T o g 2nt2
2t M+ 2
_ am % b A2n+2
m+1 2n + 2 ’
that is

1 2 am m+41 b 2n+2

2 PR o

_am yms b jeni (8)
m+1 on + 2 ’

We use the following trial function to determine the angular
frequency w:

u = Acoswt. ()

Substituting (9) into (8), we obtain the following residual

1 m m
R(t) = 5142&)2 SiIl2 wt —|— amlA% COS% wt
b
+mA2n+2 C082n+2 wt
n
— am mi L 2n+2
m+1 2n + 2 ’
that is
1 2 m m
R(t) = 3 A2w? sin® wt + afl AT cos T wt
b
+?A2n+2 COS2n+2 wt
n
_ 2am A LAZHQ .
m+1 n+1
We set
T 2
/ R(t)coswtdt =0, T = il
0 w

to determine the w — A relationship, which reads

1o 20m  mn _Ejng+%ﬂ
3 m+1 2 T2+ 5)
bAZ+2 L G2t
n+1 (2n+3)1] 7
where I'(+) is T function, and T'(z) = [~ t" te~"dt.
Then
R | E VIR E RS
A | m+1 2 T2+ 5;)
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Therefore, we can obtain the following periodic solution

V3] 2am A 1_&1“(%—1—%)
m+1 2 T2+ 5-)

A
bA2n+2 2n +2)I1\]?
n p_@nt2) t|.
n+1 (2n +3)N
To illustrate the accuracy of the obtained results, we give

two examples as follows:
In case m = 3,b = 0, equation (7) becomes

u(t) = Acos

" i
u' +au3 =0,

its frequency reads w = 1.0834b2 A~ 3, its exact frequency[2]
1S Wey = 1.0705a2 A=5. Therefore its accuracy reaches
0.0121.

In case n = 1,a = 0, equation (7) becomes

o+ bu® =0,

its frequency reads w = 0.8367Abz, its exact frequency[2]
IS Wep = 0.8472Ab? . Therefore its accuracy reaches 0.0124.
Compared with the results in [3], our result is higher accuracy.

III. NUMERICAL SIMULATIONS

In this section, we will present some numerical results at
different values.

One can see Figure 1 and Figure 2 on next page. Dashed
line: exact solution, continuous line: approximate solution.

IV. CONCLUSIONS

In this work, the nonlinear equations are efficiently han-
dled by He’s frequency formulation which determined by
He’s energy balance method. It has been proved to be a
powerful mathematical tool for searching exact solutions for
nonlinear equations without requirement of perturbation or
nonlinearities. The analytical approximation obtained by this
new method is valid for the whole solution domain with high
accuracy.
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Fig.1. Comparison of exact solution of equation (2) with Fig.2. Comparison of exact solution of equation (7) with
approximate solution © = Acoswt at different values of a, approximate solution u = Acoswt at different values of a,
b, ¢ and A, where w is defined by equation (6). b, m, n and A, where w is defined by equation (10).
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