WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/13446,
	  title     = {Effect of Prandtl Number on Natural Convection Heat Transfer from a Heated Semi-Circular Cylinder},
	  author    = {Avinash Chandra and  R. P. Chhabra},
	  country	= {},
	  institution	= {},
	  abstract     = {Natural convection heat transfer from a heated
horizontal semi-circular cylinder (flat surface upward) has been
investigated for the following ranges of conditions; Grashof number,
and Prandtl number. The governing partial differential equations
(continuity, Navier-Stokes and energy equations) have been solved
numerically using a finite volume formulation. In addition, the role of
the type of the thermal boundary condition imposed at cylinder
surface, namely, constant wall temperature (CWT) and constant heat
flux (CHF) are explored. Natural convection heat transfer from a
heated horizontal semi-circular cylinder (flat surface upward) has
been investigated for the following ranges of conditions; Grashof
number, and Prandtl number, . The governing partial differential
equations (continuity, Navier-Stokes and energy equations) have
been solved numerically using a finite volume formulation. In
addition, the role of the type of the thermal boundary condition
imposed at cylinder surface, namely, constant wall temperature
(CWT) and constant heat flux (CHF) are explored. The resulting flow
and temperature fields are visualized in terms of the streamline and
isotherm patterns in the proximity of the cylinder. The flow remains
attached to the cylinder surface over the range of conditions spanned
here except that for and ; at these conditions, a separated flow
region is observed when the condition of the constant wall
temperature is prescribed on the surface of the cylinder. The heat
transfer characteristics are analyzed in terms of the local and average
Nusselt numbers. The maximum value of the local Nusselt number
always occurs at the corner points whereas it is found to be minimum
at the rear stagnation point on the flat surface. Overall, the average
Nusselt number increases with Grashof number and/ or Prandtl
number in accordance with the scaling considerations. The numerical
results are used to develop simple correlations as functions of
Grashof and Prandtl number thereby enabling the interpolation of the
present numerical results for the intermediate values of the Prandtl or
Grashof numbers for both thermal boundary conditions.},
	    journal   = {International Journal of Mechanical and Mechatronics Engineering},
	  volume    = {6},
	  number    = {1},
	  year      = {2012},
	  pages     = {146 - 152},
	  ee        = {https://publications.waset.org/pdf/13446},
	  url   	= {https://publications.waset.org/vol/61},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 61, 2012},
	}