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Abstract—Linearization of graph embedding has been emerged
as an effective dimensionality reduction technique in pattern
recognition. However, it may not be optimal for nonlinearly
distributed real world data, such as face, dueto its linear nature. So, a
kernelization of graph embedding is proposed as a dimensionality
reduction technique in face recognition. In order to further boost the
recognition capability of the proposed technique, the Fisher's
criterion is opted in the objective function for better data
discrimination. The proposed technique is able to characterize the
underlying intra-class structure as well as the inter-class separability.
Experimental results on FRGC database validate the effectiveness of
the proposed technique as a feature descriptor.
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|. INTRODUCTION

RECENT studies claimed that intrinsic data geometrica
structures  may possess inherited discriminating power
since high dimensiona datais treated as a set of geometrically
associated points lying on or nearly on a low dimensional
manifold [1-3]. Graph embedding techniques, which seek data
embedding via data neighbourhood preservation, are able to
disclose the intrinsic manifold of a data. Representative
instances that are widely implemented in face recognition
include Laplacianface (or Locality Preserving Projection,
LPP) optimally preserves the neighbourhood structure of a
data set based on heat kernel nearest neighbour graph [4] and
Neighbourhood Preserving Embedding (NPE) restricts
neighbouring pointsin the high dimensional image space to be
located within the same neighbourhood in the low dimension
feature spacein asimilar relative spatial situation [5].

The inherited discriminating capability of these algorithms
cannot be assured since real world data is too complicated to
measure. To further enhance the discriminating capability of
the graph embedding agorithms, a discriminant criterion is
explicitly integrated. For examples, Marginal Fisher Anaysis
(MFA) [6], Locality Sensitive Discriminant Analysis (LSDA)
[7] and Neighbourhood Preserving Discriminant Embedding
(NPDE) [8] incorporate Fisher criterion (FC) to optimize the
algorithm objective functions.
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However, these discriminant techniques encode pattern
information based on second order dependencies. But, those
higher order dependencies in an image (e.g. the correlations
among three or more pixels of an edge) have been neglected
[9]. This information might capture pertinent data features.
Hence, a nonlinear mapping could be used to map the datato a
higher dimensional feature space to “unfold” the data
manifold. With this, those discriminative nonlinear data
structures can emerge under this new representation. Kernel
trick allows this unfolding implicitly [9].

In this paper, a kernelization of graph embedding technique
is proposed. To achieve superior discriminating capability, the
proposed technique incorporates three mechanisms: a kernel
trick, a Graph Embedding (GE) criterion and the Fisher's
criterion (FC). The technique is namely as Kerne
Discriminant Embedding (KDE). In KDE, the input data is
first mapped into a higher dimensional festure space via the
kernel trick for unfolding the data manifold to release the
underlying nonlinear features. Then, the released underlying
features are learned by GE and represented in GE coefficients.
By optimizing FC, an optima projection is sought to
characterize the intra-class compactness while maximizing the
inter-class separability.

This proposed technique overcomes the limitation of the
traditional linear subspace techniques, i.e. Principal
Component Anaysis (PCA) [11] and Linear Discriminant
Analysis (LDA) [12], for the data distribution assumption.
Besides that, KDE also overcomes the limited success of the
ordinary linearization of graph embedding due to its linear
nature by incorporating kernel trick.

I1.KERNEL DISCRIMINANT EMBEDDING

KDE utilizes kernel trick to project the input data onto a
higher dimensional feature space, denoted as kernel space.
The main purpose is to reveal the underlying intrinsic data
structures in this new representation. In addition, KDE
employs neighbourhood preserving criterion to learn loca
features of the data. Furthermore, KDE utilizes Fisher
criterion to construct a discriminant projection by making the
projected intra-class samples as compact as possible, while the
projected samples from different classes are far apart.

A. Computation of Kernel Trick

Let {x,O0R"|i=1,..., n} be aset of d-dimensional vectors of
face images. This input data is projected into a higher
dimensiona feature space, denoted as F, via a nonlinear

mapping, ®: x; IR - f, DF(: R‘).
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The inner product between the two mapped samgples)
and ®(x;) in F can be computed via a kernel function:

K(X;, %) =[P(x).P(x;)] 1)
Since the dot product of the vectors can be condpate
D(x;).D(X;) = D(X; )Td>(>q ), alternatively, we can present

the kernel in matrix form,
K = d(X) d(X)
whereX = {x,0R"|i=1,...,n}.

)

B.Formulation of Intra-class Coefficients Modelling
Let the mapped samples be a setdifmensional vectors in
the feature spack{ ®(x;) OR'|i=1,..., n. The intra-class

coefficients ¢y reflect the contribution of thg™ neighbours

to the reconstruction of the" data. @' #0 if the pair of
samples is from the same class, known as locahheigs;

andw)’ =0, otherwise. The intra-class coefficients matrix

W"can be calculated by minimizing the objective fimmt

2
r
£ (W)=Y ' (@(0x) ~o(x))) 3)
=1
where x; and x; are from the same class.
Let YOR'"* be a transformation matrix and

{yi =YTo(x) |y DR"} are projected face vectors of

{d)(xi) |®P(x)O R‘} , Wheret'<< t. In order to preserve the

data local geometry, the following cost functiomé&fined,

2
g0 =D %= > ad'y;
= =1

=Z[yi Y2 @'y y YD alaly, yk]
i=1 j=1

j=lk=1
ZZ[Z% Y ‘ZZ%WM Yi +Zza&vi”a&“;”yi yj]
=1\ =t =1 j=1 k=1
> 2 Mivy,

i=1 j=1
=YMY T
4)
where the matrixv OR"*",
0 fori#]j
=0 - — )V W Wi =
The matrix M is  sparse matrix, where
T . . . . .
M :(I -W "") @ -W W) with | is an identity matrix.
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Referring to (4), we can have alternative expressa the
objective function of calculating the intra-classefficients,

E(WW):trace_dD(X)(l -W W)Tﬁ -W W)‘DK )T}

=trace (I —WW)CD(X )TGJ(X)ﬁ W W)T} (5)

(1-wH)k (i -w W)T}

C.Formulation of Inter-class Coefficients Modelling

=trace

Let «f denotes the inter-class coefficients whege# 0 if

the j™sample is one of th& nearest neighbours of"
sample with different class label, i.¢fh sample is the inter-
class neighbour ofithsample, known as between-class
neighbour; otherwise,afj’:o. The inter-class coefficients

matrix W of the inter-class neighbourj{' sample) ofi"

sample can be sought by minimizing the followingegkive
function,

£(WP) :Z
i=1

2

q’(xi)‘g%bq’(xj) (6)

Without loss of generality, the weights sum up tee dor
each point. In order to keep the projected samplatifferent
classes far from each other, we maximize the fatligwcost
function,

2
&(y) =z Yi _Z‘Uﬁ)yj'
= =1

=YDY'
whereD:(I -W ) (I -W ) wherel is an identity matrix.

Hence, the cost function in (6) can be alternagivel
represented as,

e(Wb)=trace[<D(X)(l -w o) f W )oK )T}

(7

:trace{(l “WP) o )TO ) W b)T} (8)
:trace[(l ~WP)K (i -w b)T}

D.Discriminant Projection
KDE optimizes its objective function via Fisherterion for
a better discriminant projection. KDE minimize§W") and

maximizess(WP) for calculating the optimized projection,
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|5b(Y)|
lew(Y)

Y o) (i -w®) [ -w )oK )TY‘
- )or Ty

Jioe (Yop) =arg Ymax

=arg max
Y Yo (1 -w )

B YTLubY|
=arg YmaxWWY1

—

9
where W° = K (1 -W®)(i -w b)T K and

W =K (1 -w (i w W)T K, K=®X) o(X).

I1l.  JUSTIFICATION

In face recognition, it is desired to construct rajgction
that maximizes the inter-class samples separabilitiiile
minimizing the intra-class samples compactnesbétter data
discrimination. An example of a two-class classifion
problem is discussed in this section. Figure 1lsitiates the
data distribution, as well as the optimal projenticof PCA,
LDA and KDE, represented as solid lines. The littest are
orthogonal to each projection direction are theinoat
classification lines of each method, representedbéted lines.
From the figure, we observe that KDE is able toivdera
discriminative projection for the data. The intéass data are
not overlapping on the KDE projection. In additiothe
decision boundary of KDE can better separate the data
clusters compared with other techniques.
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Fig. 1 Optimal projections and decision boundanieBCA, LDA and
KDE
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IV. EXPERIMENTAL RESULTS ANDDISCUSSIONS

The performance of the proposed technique is asddss
using Face Recognition Grand Challenge Databas& (R
[12]. Sample images of FRGC Database were colleatete
University of Notre Dame. The FRGC data corpus &ioist
high resolution still images taken under controlleghting
conditions and with unstructured illumination, 3Bass, and
contemporaneously collected still images. The aileu
images were taken under a studio setting, theyudrérontal
facial images taken under two lighting conditiotve or three
studio lights) and with two facial expressions (amgi and
neutral). On the other hand, the uncontrolled irsagere
taken under varying illumination conditions; e.ballways,
atria, or outdoors. Fig. 2 illustrates face imageésFRGC

database.

Fig. 2 Face image samples of FRGC database

The recognition performance of the proposed KDE is
compared with other existing techniques, such a&,ROA,
LPP, supervised LPP (SLPP), NPE and supervised NPE
(SNPE). Note that the difference between LPP apérsised
LPP is the neighbourhood assignment. In LRPnearest
samples of a specific sample is assigned as itghheurs;
these neighbours may be from the same class atiffeeent
classes. On the other hand, in SLPP, the samesdagsles of
a specific sample are treated as its neighbourmiledi
neighbourhood assignment is performed on NPE arlRESN

FRGC database is partitioned into two sets: trgiramd
testing sets. The training set is used to estakitistprojection
space for PCA, LDA, LPP, SLPP, NPE, SNPE and KDig; t
testing set is used to evaluate the performancethef
respective dimensionality reduction technique.

Two test strategies are carried out in this study:

- subject-dependent test. There is no overlapping in
subject between the training and testing sets.

- subject-independent test. Both training and testing
sets contain same subjects; but, there is no
overlapping in sample between the training and
testing sets.

In subject-dependent test, we are using a subseRGC
database consisting 100 subjects with six trais@agples and
six testing samples of each subject. In subjectpeddent
test, 480 images (from 80 subjects with six samplesach)
are employed as training set; whereas, anotherid@@es
(from another 80 subjects with six samples of eaat®
adopted as testing set. The average error rateR{AEhat is
the average value of false accept rate (FAR) afs feject
rate (FRR)) measured in this experiment serve as a
performance measurement metric for the quality loé t
dimensionality reduction techniques.
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We evaluate the effectiveness of KDE with polyndraiad

Gaussian kernels, as shown in Table I. Fig. 3 asticiv the
optimal results corresponding to the optimal patamef each

kernel. Gaussian kernel with parameter sigmes10
demonstrates the best results among the kernelboth
subject-dependent and subject-independent tests

TABLE |
PARAMETER RANGES USED IN THE EXPERIMENT

Kernel Parameter Ranges
Polynomial Degree (d) Gamma (G)
k(xy) = (xTy)* 1~2 N/A
Gaussian N/A 1,10, 20
llx - yII?
k(x,y) = exp (——55—)
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Fig. 3 Recognition error rates of KDE with diffeté&wrnels in
subject-dependent test
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Fig. 4 Recognition error rates of KDE with diffetéwrnels in
subject-independent test

Fig. 5 and 6 demonstrates the recognition perfoomaof

KDE with Gaussian kernelg =10 and other existing gg

dimensionality reduction techniques (PCA, LDA, LF32PP,
NPE and SNPE) along with different feature dimensio
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Table 1l shows the optimal recognition performance
corresponding to its feature dimension of the tephes. For
LDA, all the samples are projected onto a subsgpeaned
by thec-1 largest eigenvectors, wherés the number of class,
i.e. LDA lengths are 99 in the subject-dependesttaad 79 in
the subject-independent test, respectively. Frome th
experimental results, it is observed that supedvisethods
including KDE, LDA, SLPP and SNPE achieve better
recognition performance than non-supervised methsdsh
as PCA, LPP and NPE, in both tests.

SNPE and SLPP are supervised methods in such ahaty
they seek a projection that preserves the locaimgény,
formed by neighbours with a similar class labelsdzh on
respective objective function. Since SNPE and Stéwsider
only the within-class information, their performascare not
comparable to that of KDE. Results show that KDEaols
the highest recognition accuracy in both testss Thibecause
KDE is able to signify nonlinear features of facatal and
explicitly extract discriminating features via kefrtrick, GE
and Fisher criteria.
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Fig. 5 Recognition error rates of KDE with Gausdiamel,
sigma=10 and other dimensionality reduction techesqn subject-
dependent test
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Fig. 6 Recognition error rates of KDE with Gausdiamel,
ma=10 and other dimensionality reduction techesqn subject-
independent test
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TABLE Il
RECOGNITIONERROR RATE OFKDE AND OTHER DIMENSIONALITY

TABLE IlI

COMPUTATIONAL TIME (IN ELAPSEDCPUSECONDY OF KDE AND OTHER

REDUCTION TECHNIQUES TECHNIQUES
Subjec-dependent Te Methods Training Time Testing Time
Methods Error Rate (%)  Feature (seconds) (seconds)
Dimension Non-supervised techniques
Non-supervised techniques PCA 5.361986 0.006534
PCA 51.¢ 20C LPP 4.118671 0.006179
LPP 40.0 180 NPE 3.01267: 0.00452
NPE 42.8 100
Supervised techniques
Supervised techniques LDA 3.221592 0.004220
LDA 29.8 99 SLPP 4.223864 0.001321
SLPF 18.C 20 SNPE 3.23656 0.00282
SNPE 34.1 70 KDE 22.378431 0.004833
KDE 7.3 110
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