Natural Convection of Water-Based CuO Nanofluids in a Cylindrical Enclosure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Natural Convection of Water-Based CuO Nanofluids in a Cylindrical Enclosure

Authors: Baha Tulu Tanju, Kamil Kahveci

Abstract:

Buoyancy driven heat transfer of nanofluids in a cylindrical enclosure used as a control unit in the subsea hydrocarbon injection wells is investigated in this study. The governing equations obtained with the Boussinesq approximation are solved using Comsol Multiphysics finite element analysis and simulation software. The base fluid is water and CuO is used as nanoparticles. Solution is obtained for nanoparticle solid volume fraction of 8% and for Rayleigh number in the range of 105-107. The results show that nanoparticle usage in the cylindrical electronic control unit has a significant effect on the flow and heat transfer.

Keywords: CuO, enclosure, nanofluid, natural convection

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1080712

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988

References:


[1] J. A. Eastman, S. U. S. Choi, W.Yu, and L. J. Thompson, "Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles," Applied Physical Letters, vol. 78, pp. 718-720, 2001.
[2] S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, "Anomalous thermal conductivity enhancement in nanotube suspension," Applied Physical Letters, vol. 79, pp. 2252-2254, 2001.
[3] Y. Xuan, and Q. Li, "Heat transfer enhancement of nanofluids," Int. J. Heat Fluid Flow, vol. 21, pp. 58-64, 2000.
[4] P. Keblinski, S. R. Phillpot, S. U. S. Choi, and J. A. Eastman, "Mechanisms of heat flow in suspensions of nano-sized particles nanofluids," Int. J. Heat Mass Transfer, vol. 45, pp. 855-863, 2002.
[5] W. Yu, and S. U. S. Choi, "The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model," J. Nanoparticle Research, vol. 5, pp. 167-171, 2003.
[6] Y. Xuan, Q. Li, Y. Xuan,, and Q. Li, "Experimental Research on the Viscosity of Nanofluids," Report of Nanjing University of Science and Technology, 1999.