Structural Modelling of the LiCl Aqueous Solution: Using the Hybrid Reverse Monte Carlo (HRMC) Simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Structural Modelling of the LiCl Aqueous Solution: Using the Hybrid Reverse Monte Carlo (HRMC) Simulation

Authors: M. Habchi, S.M. Mesli, M. Kotbi

Abstract:

The Reverse Monte Carlo (RMC) simulation is applied in the study of an aqueous electrolyte LiCl6H2O. On the basis of the available experimental neutron scattering data, RMC computes pair radial distribution functions in order to explore the structural features of the system. The obtained results include some unrealistic features. To overcome this problem, we use the Hybrid Reverse Monte Carlo (HRMC), incorporating an energy constraint in addition to the commonly used constraints derived from experimental data. Our results show a good agreement between experimental and computed partial distribution functions (PDFs) as well as a significant improvement in pair partial distribution curves. This kind of study can be considered as a useful test for a defined interaction model for conventional simulation techniques.

Keywords: RMC simulation, HRMC simulation, energy constraint, screened potential, glassy state, liquid state, partial distribution function, pair partial distribution function.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1080488

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418

References:


[1] I. Harsányi, Ph. A. Bopp, A. Vrhovšek and L. Pusztai, J. Mol. Liq. 158, 2011, pp. 61-67.
[2] K. Winkel, M. Seidl, T. Loerting, L. E. Bove, S. Imberti, V. Molinero, F. Bruni, R. Mancinilli and M. A. Ricci, J. Chem. Phys. 134, 024515, 2011, pp. 1-8
[3] I. Harsányi, and L. Pusztai, J. Chem. Phys. 122, 124512, 2005, pp. 1-6.
[4] M. V. Fedetova, R. D. Oparin and V. N. Trostin, J. Struc. Chem. 43(3), 2002, pp. 473-477.
[5] J.F.Jal, K. Soper, P. Carmona and J. Dupuy, J. Phys. Cond. Matter, 3(5), 1991, pp. 551-567.
[6] J. Dupuy-Philon, J. F. Jal and B. Prével, J. Mol. Liq. 64(1-2), 1995, pp. 13-23.
[7] B. Prével, J.F. Jal, J. Dupuy-Philon, A.K. Soper, J. Chem. Phys. 103, 1995, pp. 1886.
[8] A. A.-Elarby, H. Dez, B. Prevel, J.F. Jal, J. Bert and J. Dupuy-Philon, J. Mol. Liq. 84(3), 2000, pp. 289-299.
[9] R. L. Mc Greevy, L. Pusztai, Mol. Simul. 1(6), 1988, pp. 359-367.
[10] R. L. Mc Greevy, J. Cond. Matter, 13, 2001, pp. R877-R913.
[11] R. L. Mc Greevy, P. Zetterström, Current Opinion in Solid State and Materials Science, 7(1), 2003, pp. 41-47.
[12] W. M. Bartczac, J. Kroh, M. Zapalowzki, K. Pernal, Phyl. Trans. R Soc. Lond. 359, 2009, pp. 1539.
[13] M. Kotbi, H. Xu, Mol. Phys. 94(2), 1998, pp. 373.
[14] M. Kotbi, H. Xu, M. Habchi and Z. Dembahri, Phys Letters A, 315(6), 2003, pp. 463-466.
[15] T. Petersen, I. Yarovsky, I. Snook, D. G. McCulloch and G. Opletal, Carbon, 41(12), 2003, pp. 2403-2411.
[16] S. K. Jain, R. J.-M. Pellenq, J. P. Pikunic and K. E. Gubbins, Langmuir, 22(24), 2006, pp. 9942-9948.
[17] J. Pikunic, C. Clinard, N. Cohaut, K. E. Gubbins, J.-M. Guet, R. J.-M. Pellenq, I. Rannou and J.-N. Rouzaud, Langmuir, 19(20), 2003, pp. 8565-8582.
[18] R. Evans, Mol. Simul. 4, 1990, pp. 409.
[19] N. Metropolis, A. W. Rosenblouth, M. N. rosenbluth, A. H. teller and E. Teller, J. Phys. Chem. 21, 1953, pp. 1087.
[20] S. Phatisena, J. Sci. Soc. Thailand, 13, 1987,) pp. 221-229.
[21] P. Bopp, G. Jancs├│ and K. Heinzinger, Chem. Phys. Letters, 98(2), 1983. pp. 129-133.
[22]
[22] M.-C. Bellissent-Funel, G.W. Neilson (Eds.), NATO Adv. Sci. Inst. Ser. C, Mathematical and Physical Science, Vol. 205, Kluwer Academic, Dordrecht, 1986.
[23] R. Bellisent, C. Bergman, P. Ceolin and J. P. Gasparad, Phys. Rev. Letters, 59, 1987,pp. 661-663.