The Role of Ga(Gallium)-flux and AlN(Aluminum Nitride) as the Interface Materials, between (Ga-face)GaN and (Siface)4H-SiC, through Molecular Dynamics Simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
The Role of Ga(Gallium)-flux and AlN(Aluminum Nitride) as the Interface Materials, between (Ga-face)GaN and (Siface)4H-SiC, through Molecular Dynamics Simulation

Authors: Srikanta Bose, Sudip K. Mazumder

Abstract:

We report here, the results of molecular dynamics simulation of p-doped (Ga-face)GaN over n-doped (Siface)( 0001)4H-SiC hetero-epitaxial material system with one-layer each of Ga-flux and (Al-face)AlN, as the interface materials, in the form of, the total Density of States (DOS). It is found that the total DOS at the Fermi-level for the heavily p-doped (Ga-face)GaN and ndoped (Si-face)4H-SiC hetero-epitaxial system, with one layer of (Al-face)AlN as the interface material, is comparatively higher than that of the various cases studied, indicating that there could be good vertical conduction across the (Ga-face)GaN over (Si-face)(0001)4HSiC hetero-epitaxial material system.

Keywords: Molecular dynamics, GaN, 4H-SiC, hetero-epitaxy.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1079522

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969

References:


[1] http://www.onr.navy.mil/sci_tech/31/312/ncsr/materials/default.asp
[2] http://www.ioffe.ru/SVA/NSM/Semicond
[3] http://www.springerlink.com/content/g1133v/?sortorder=asc&p_o=2 50
[4] http://www.springerlink.com/content/g1133v/?sortorder=asc&p_o=7 0
[5] Srikanta Bose, and Sudip Mazumder, ( Paper no. 48) Government Microcircuit Applications and Critical Technology Conference (GOMACTech-10), Reno, NV, March 22-25, 2010.
[6] H. Yu, M. K. Ozturk, S. Ozcelik, and E. Ozbay, J. Crystal Growth 293, 273 (2006).
[7] O. H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, Appl. Phys. Lett. 71, 2638 (1997).
[8] Y. Honda, M. Okano, M. Yamaguchi, and N. Sawaki, Phys. Stat. Sol. (c) 2, 2125 (2005).
[9] N. I. Kuznetsov, A. E. Gubenco, A. Nikolaev, Y. V. Melnik, M. N. Blashenkov, I. P. Nikitina, and V. A. Dmitriev, Materials Science and Engineering B46, 74 (1997).
[10] J. T. Torvik, M. Leksono, J. I. Pankove, B. V. Zeghbroeck, H. M. Ng, and T. D. Moustakas, Appl. Phys. Lett. 72, 1371 (1998).
[11] J. T. Torvik, C. H. Qiu, M. Leksono, and J. I. Pankove, Appl. Phys. Lett. 72, 945 (1998).
[12] A. E. Nikolaev, S. V. Rendakova, I. P. Nikitina, K. V. Vassilevski, and V. A. Dmitriev, J. Electronic Materials 27, 288 (1998).
[13] J. T. Torvik, M. Leksono, J. I. Pankove, C. Heinlein, J. K. Grepstad, and C. Magee, J. Electronic Materials 28, 234 (1999).
[14] E. Danielsson, C. M. Zetterling, M. Ostling, A. Nikolaev, I. P. Nikitina and V. Dmitriev, IEEE Trans Electron Devices 48, 444 (2001).
[15] Y. Nakano, J. Suda, and T. Kimoto, Phys. Stat. Sol. (c) 2, 2208 (2005).
[16] A. S. Brown, M. Lusurdo, T. H. Kim, M. M Giangregorio, S. Choi, M. Morse, P. Wu, P. Capezzuto, and G. Bruno, Cryst. Res. Technol. 40, 997 (2005).
[17] B. Delley, J. Chem. Phys., 92, 508-517, 1990.
[18] http://accelrys.com/
[19] http://www.ncsa.illinois.edu/UserInfo/Resources/Hardware/Intel64 Cluster/TechSummary/