WASET
	%0 Journal Article
	%A James Kuria and  John Kihiu
	%D 2008
	%J International Journal of Mechanical and Mechatronics Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 14, 2008
	%T Modeling Parametric Vibration of Multistage Gear Systems as a Tool for Design Optimization
	%U https://publications.waset.org/pdf/1259
	%V 14
	%X This work presents a numerical model developed to
simulate the dynamics and vibrations of a multistage tractor gearbox.
The effect of time varying mesh stiffness, time varying frictional
torque on the gear teeth, lateral and torsional flexibility of the shafts
and flexibility of the bearings were included in the model. The model
was developed by using the Lagrangian method, and it was applied to
study the effect of three design variables on the vibration and stress
levels on the gears. The first design variable, module, had little effect
on the vibration levels but a higher module resulted to higher bending
stress levels. The second design variable, pressure angle, had little
effect on the vibration levels, but had a strong effect on the stress
levels on the pinion of a high reduction ratio gear pair. A pressure
angle of 25o resulted to lower stress levels for a pinion with 14 teeth
than a pressure angle of 20o. The third design variable, contact ratio,
had a very strong effect on both the vibration levels and bending
stress levels. Increasing the contact ratio to 2.0 reduced both the
vibration levels and bending stress levels significantly. For the gear
train design used in this study, a module of 2.5 and contact ratio of
2.0 for the various meshes was found to yield the best combination
of low vibration levels and low bending stresses. The model can
therefore be used as a tool for obtaining the optimum gear design
parameters for a given multistage spur gear train.
	%P 217 - 224