
 

 

  
Abstract—The static stability analysis of stiffened functionally 

graded cylindrical shells by isotropic rings and stringers subjected to 
axial compression is presented in this paper. The Young's modulus of 
the shell is taken to be function of the thickness coordinate. The 
fundamental relations, the equilibrium and stability equations are 
derived using the Sander's assumption. Resulting equations are 
employed to obtain the closed-form solution for the critical axial 
loads. The effects of material properties, geometric size and different 
material coefficient on the critical axial loads are examined. The 
analytical results are compared and validated using the finite element 
model. 
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I. INTRODUCTION 
TIFFENED cylindrical shells have found widespread use 
in modern engineering, especially in aircraft and 

spacecraft industry. There have been many studies on the 
stability of cylindrical shells but closed-form solutions are 
possible only for the case which all edges are simply 
supported. Due to the increasing demands of high structural 
performance requirements, the study of functionally graded 
materials in structures has received considerable attention in 
recent years.  

The buckling and postbuckling of cylindrical shells under 
combined loading of external pressure and axial compression 
are demonstrated by Shen and Chen [1]. The instability 
analysis of stiffened cylindrical shells under hydrostatic 
pressure is given by Barush and Singer [2]. The postbuckling 
of stiffened cylindrical shells under combined external 
pressure and axial compression is investigated by Shen et al. 
[3]. Using a novel finite elements model, Sridharan and 
Zeggane [4] studied the interaction of local and overall 
buckling in stiffened plates and cylindrical shells. Numerical 
examples of plate and shell structures are presented to throw 
light on these aspects of the methodology as well as to 
demonstrate the accuracy and efficiency of the model. Zeng 
and Wu [5] reported the postbuckling analysis of stiffened 
braided thin shells subjected to combined loading of external  
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pressure and axial compression. Yaffe and Abramovich [6] 
have analyzed numerically and experimentally the dynamic 
buckling of cylindrical stringer-stiffened shells. Spagnoli [7] 
studied the different modes of instability in stiffened conical 
shells under axial compression through a linear eigenvalue 
finite element analysis. Kidane et al. [8] derived the buckling 
loads of a generally cross and horizontal grid stiffened 
composite cylinder by developing an analytical model for 
determination of the equivalent stiffness parameters of a grid 
stiffened composite cylindrical shell. Rikards et al. [9] 
employed a triangular finite element model to study the 
buckling and vibration of laminated composite stiffened shells 
and plates based on the first order shear deformation theory. 
The stabilization of a functionally graded (FG) cylindrical 
shell under axial harmonic loading is investigated by Ng et al. 
[10]. Narimani et al. [11] was developed a closed-form 
solution based on the first order shear deformation theory to 
study the buckling loads of FG cylindrical shells under three 
types of mechanical loadings. 

The main purpose of the present paper is to investigate the 
buckling behavior of FG stiffened cylindrical shells by 
isotropic rings and stringers under axial compression. The 
Donnell nonlinear strain-displacement relations are employed 
to derive the equilibrium and stability equations. The closed-
form solution is used to obtain the critical axial loads. The 
numerical results of the critical loads are presented for 
variation of the material properties and geometric size of the 
shell. To validate the analytical solution, a finite element 
analysis is employed.  

II. THEORETICAL DEVELOPMENT 
Fig. 1 illustrates the geometry and configuration of a 

cylindrical shell of mean radius ,a  thickness ,h  and length L  
with the cylindrical coordinates ),,( zx θ  made of functionally 
graded materials. A power law distribution is chosen to 
describe the variation of the Young's modulus in the thickness 
direction as [11] 
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Fig.1 Geometry of FG circular cylindrical shell. 

 
where k  is the material coefficient and subscripts m  and c  
refer to the metal and ceramic constituents, respectively. The 
Donnell form of the kinematic relations for cylindrical shells 
is as follows [12] 
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where vu  ,  and w  are the axial, circumferential, and lateral 
displacements of shell, respectively, θεε  ,x  and θγ x  are the 
normal and shear strains, respectively and θkk x  ,  and θxk  are 
the curvatures. Also, the indices x  and θ  refer to the axial 
and circumferential directions, respectively. A thin-walled FG 
cylindrical shell, stiffened by closely spaced circular rings 
attached to the inside of the shell skin and with longitudinal 
stringers attached to the outside is considered (see Fig. 2). For 
a shell-wall construction that is not symmetrical relative to the 
shell middle surface, there is a coupling between extensional 
forces and curvature change and between bending moments 
and extensional strains. To account for this coupling effect the 
constitutive equations are expressed as [12] 
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where the stiffness parameters ijC  are given by 

 

 
Fig. 2 Schematic view of shell-wall construction for FG stiffened 

cylindrical shell. 
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where subscripts s  and r  refer to the stringers and rings, 
respectively. Note that, the thickness and width for stringers 
are respectively denoted by sh and sb  and for rings are rh and 

.rb  Also, sd  and rd  are the distances between two stringers 

and rings, respectively and the eccentricities se  and re  
represent the distance from the shell middle surface to the 
centroid of the stiffener cross section (Fig. 2). In Eq. (3), the 
stress resultants iN  and iM  are expressed as 
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Using the minimum potential energy criterion [12], the 

equilibrium equations of stiffened cylindrical shells are 
established as follow 
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The stability equations of cylindrical shell may be derived 

by the variational approach. If V  is the total potential energy 
of the shell, the first variation Vδ  is associated with the state 
of equilibrium. The stability of the original configuration of 
the shell in the neighborhood of the equilibrium state can be 

determined by the sign of second variation V2δ . However, 

the condition of V2δ =0 is used to derive the stability 
equations of many practical problems on the buckling of 
shells [12]. Thus, the stability equations are represented by the 
Euler equations for the integrand in the second variation 
expression 
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The terms with the subscript 0 are related to the state of 

equilibrium and terms with the subscript 1 are those 
characterizing the state of stability. By substituting Eq. (3) 
into (8), the stability equations can be derived in terms of 
displacement components. 

III. BUCKLING ANALYSIS 
To determine the critical axial loads, the prebuckling 

mechanical forces should be found from the equilibrium 
equations and then substituted into the stability equations for 
the buckling analysis. Under a uniformly distributed axial 
compressive load ,P the cylinder shortens, except at the ends, 
and increases in diameter. The initial deformation is 
axisymmetric and the prebuckling mechanical forces are given 
by [12] 
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,0 000 −===  (9) 

 
Upon substituting the prebuckling forces into the stability 

equations (8) in terms of displacement components, a set of 
three differential equations is obtained. To solve this set of 
equations, the following approximate solutions, which satisfy 
the resulting equations and the simply supported boundary 
conditions are assumed 
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where ./ Lmm π=  Substituting relations (10) into the 
stability equations in terms of displacement components gives 
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which [ ]a  is a symmetric matrix. By setting | ija |=0 to obtain 
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the nonzero solution, the value of P  is found  
 

  
Fig. 3 FEM model for FG stiffened cylindrical shell with isotropic rings and stringers. 
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The critical axial load can be obtained by minimizing P  

with respect to m  and ,n  the number of longitudinal and 
circumferential buckling waves. By setting the material 
coefficient to zero )0( =k  and minimizing with respect to m  
and ,n  Eq. (13) is reduced to the critical axial load of 
unstiffened homogeneous cylindrical shell 
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The above equation has been reported by Brush and 

Almorth [12]. 
The present analytical solution needs to be verified with 

some other mathematical computational model such as the 
FEM. For verification, we have used a finite element program 
code. The FEM analysis was done on a FG unstiffened and 
stiffened cylindrical shell using a 2-D FEM model (Fig. 3). 

IV. NUMERICAL RESULTS 
This paper presents the mechanical buckling analysis of 

functionally graded stiffened cylindrical shells by isotropic 
rings and stringers under axial compression load. A ceramic-
metal FG cylindrical shell is considered. The FG cylindrical 
shell constituents are zirconia and aluminum. The inner 
surface of the FG cylindrical shell is composed of zirconia and 
the outer surface is composed of aluminum. The rings and 
stringers are isotropic and are made of aluminum. The 
Young's modulus for zirconia and aluminum are 151 GPa and 
70 GPa, respectively. The Poisson's ratio is assumed to be 
constant and equal to 0.3. As a numerical example, we 
consider a FG stiffened cylindrical shell with 15 rings and 
stringers illustrated in Fig. 3. The following stiffened shell 
dimensions have been used: 
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For the given values of the material coefficient k  and 

thickness of shell,  the values of m  and n  may be chosen by 
trial to give the smallest value of buckling load .P  These 
values can be obtain by a suitable software or optimization 
program.  

Comparisons of the critical axial loads for isotropic 
stiffened cylindrical shell are presented in Table 1. In this 
table for the case of isotropic cylindrical shell, it is assumed 
that .0=k Table 1 shows that the buckling pressure increases 
by the increasing of the various LR /  ratios. Comparisons of 
the critical axial loads for the functionally graded stiffened 
cylindrical shell with isotropic rings and stringers are 
presented in Tables 2. Table 2 shows that the buckling 
pressure by the increasing of the various Lh /  ratios. Also 
FEM results of the critical axial loads for FG stiffened 
cylindrical shell are shown in Fig. 4. 

 
TABLE I 

COMPARING THE CRITICAL AXIAL LOADS (MPA) OF SIMPLY SUPPORTED 
HOMOGENEOUS CYLINDRICAL SHELLS (K=0). 

FEM Analytical R/L 
28.84 28.36 0.1 
57.03 53.90 0.125 
84.26 81.07 0.15 
99.04 97.90 0.175 
119.87 117.2 0.2 
138.99 137.8 0.225 
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FIG. 4 FEM RESULTS FOR FG STIFFENED CYLINDRICAL SHELL WITH ISOTROPIC RINGS AND STRINGERS. 

 
 

 
TABLE II 

COMPARING THE CRITICAL AXIAL LOADS (MPA) OF SIMPLY SUPPORTED 
FG CYLINDRICAL SHELL. 

FEM Analytical h/L 
28.43 28.05 0.0014 
38.87 36.78 0.0016 
47.21 44.69 0.0018 
54.36 51.47 0.0020 
59.53 56.70 0.0024 
63.18 60.00 0.0026 

V. CONCLUSION 
In the present paper, equilibrium and stability equations of 

simply supported functionally graded stiffened cylindrical 
shells are obtained. Then, the buckling analysis of functionally 
graded stiffened cylindrical shells under uniformly axial 
compression load is investigated. It is conclude that: 

1. The critical axial loads for homogeneous stiffened 
cylindrical shells are generally upper than the 
corresponding values for the homogeneous unstiffened 
cylindrical shells. 
2. The critical axial loads for FG stiffened cylindrical 
shells are generally lower than the corresponding value 
for the homogeneous stiffened cylindrical shells. 
3. The critical axial loads for FG stiffened cylindrical 
shells are generally upper than the corresponding value 
for the FG unstiffened cylindrical shells. 

4. The critical axial loads are increased by increasing the 
shell thickness and decreasing the material coefficient. 
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