
 

 

  
Abstract—In this paper, the difference between the Alternating 

Direction Method (ADM) and the Non-Splitting Method (NSM) is 
investigated, while both methods applied to the simulations for 2-D 
multimaterial radiation diffusion issues. Although the ADM have the 
same accuracy orders with the NSM on the uniform meshes, the 
accuracy of ADM will decrease on the distorted meshes or the 
boundary of domain. Numerical experiments are carried out to 
confirm the theoretical predication. 
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I. INTRODUCTION 
HE radiation diffusion is an important process in many 
complex physical problems, such as astrophysical 

problems and inertial confinement fusion.  
Because of the experience accumulated in solving 

one-dimensional problems [1], we have the basis for the 
construction of the algorithms for the complicated 
multidimensional problems. In the 1960’s, the Alternating 
Direction Method (ADM) were developed by Peaceman, 
Douglas and Rachford to solving the two-dimensional 
parabolic equations. The success of ADM is ensured by a 
simple reduction of the multidimensional problem to a 
sequence of one-dimensional problems with three-diagonal 
matrices solved efficiently. So the ADM are very popular in 
many numerical simulations of industrial application programs. 
With the rapid progress in computers and the matrix solvers, we 
need the Non-Splitting Methods (NSM) for the 
multidimensional problems. In fact, there are so many 
Non-Splitting Methods solving the two-dimensional diffusion 
equation during the last four decades.  

II. ALTERNATING DIRECTION METHOD AND NON-SPLITTING 
METHOD 

Consider a two-dimensional diffusion equation as follow, 
2
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t denotes the time variable, u denotes the temperature,   
L denotes the spatial differential operator and the diffusion 
coefficient K  is a given positive function of space and time. 

So we define the difference operator Λ  as the 
approximation of the differential operator L . Letting Δt  be 
the temporal step and σ be a real number with 0 1σ≤ ≤ , we 
can write the general difference formula of (1) as follow (2), 
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In general, the implicit scheme is applicable to radiation 
diffusion equation. If we consider the simplest implicit scheme, 
then we have 
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Based on this non-splitting scheme, we can deduce its 
alternating direction scheme (4), 
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Given u  is constant on the boundary of rectangular domain 
[0,1] [0,1]Ω = × , the non-splitting difference scheme can be 

written as follows 
1 1
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In the same boundary condition and domain, the alternating 
direction difference scheme is (6) 
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(6) 
If we reduce the intermediate variable u*,(6) can be changed 

to (7), as follow 
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In theory, they have the same order accuracy if applied on the 
uniform meshes. But it is not all of the truth. Compared the 
non-splitting scheme (5) with the alternating direction scheme 
(7), we can find the temporal step and boundary conditions are 
important reasons for the different accuracy of the schemes. 

III. NINE  POINT SCHEME (NPS) 
In paper [2], a finite volume scheme solving diffusion 

equation on convex polygonal meshes is the so-called Nine 
Point Scheme (NPS) on arbitrary quadrangles. In fact, this 
non-splitting scheme can be changed to the alternating 
direction scheme only on the quadrangle meshes. That is to say, 
this scheme must be used as non-splitting scheme on the 
unstructured meshes such as triangle meshes. 

Here, we do not educe the formulas in detail. As follow, 
M is the area of meshes. l is the length of mesh edge. The 
,i j  denote x  and y  directions respectively. The ⋅q n , that 

we refer to as the flux 
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So the non-splitting method is 
1
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and the alternating direction method is 
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Obviously, the coefficient matrix of the non-splitting 
method (9) is a sparse matrix. The alternating direction method 
(10) will generate three-diagonal matrices. 

In fact, the Non-Splitting Method (9) and the Alternating 
Direction Method (10) have the same formula of flux ⋅q n of 
NinePoint Scheme in [2]. 

IV. NUMERICAL RESULTS 
Consider the 2-D linear diffusion equation on rectangular 

domain [0,1] [0,1]Ω = × , 

, (0, ]= Δ Ω×tu u in T                      (11a) 

( , , ) 1, (0, ]= ∂Ω×u x y t on T           (11b) 

( , ,0) ( , ),= Ωu x y x y onϕ               (11c) 
The analytic solution for this problem is  

22( , , ) sin( )sin( ) 1−= +tu x y t e x yπ π π             (12) 
The figures of analytic solution are concentric circles. 
Given the point ∈ΩP  and the temporal step (0, ]n T∈ , 

we define the relative error as follows  
| ( , ) |

( , )
−

=
n n

n K
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where n
Pu  is the numerical solution and ( , )nu P t  is the true 

solution. So the relative error in the L2-norm is 
1
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and in the Lmax-norm is 

max | |,0 1
∞ ∈

= ≤ ≤ +n n
PP

E E n N
T

                (15) 

The number of mesh in the x  and y  directions are I  and 
J  respectively. In the following numerical examples, the total 
number of mesh is 32×32 ( 32I J= = ). The length of spatial 

step is about 1/ 32  and 1/( )x y I JΔ Δ = ⋅ . tΔ  denotes the 
temporal step. Then we fix the ratio of the temporal step and the 
spatial step /( )r t x y= Δ Δ Δ . So we have t r x yΔ = Δ Δ , if 
given r  at first. 

The terminal time is 0.5 in every example. 
We calculate the same problem on three different types of 

distorted meshes, respectively RandomMesh, KershawMesh 
and ShestakovMesh. Mesh figures are Fig. 1. 

 
Fig. 1 Random(L), Kershaw(M), Shestakov(R) Mesh figures 

A. RandomMesh 

 
ADM ( Ratio=1.0)               NSM ( Ratio=1.0) 

TABLE I 
NUMERICAL ERROR ANALYSIS AND CPU TIME ON RANDOMMESH 

Ratio Scheme 
2

nE  
∞

nE  CPU Time (s) 

ADM 0.109317E-04 0.217642E-04 0.7343 r=1.0 
NSM 0.194241E-05 0.387848E-05 2.9062 
ADM 0.336819E-04 0.670350E-04 9.375E-02 r=10.0 
NSM 0.249547E-04 0.493799E-04 0.750 
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ADM ( Ratio=10.0)               NSM ( Ratio=10.0) 

Fig.2  Numerical solution on RandomMesh  
 

B. KershawMesh 

 

 
ADM ( Ratio=1.0)               NSM ( Ratio=1.0) 

 
ADM ( Ratio=10.0)               NSM ( Ratio=10.0) 
Fig. 3 Numerical solution on KershawMesh  

 

C. ShestakovMesh 
 

 

 
ADM ( Ratio=1.0)               NSM ( Ratio=1.0) 

 
ADM ( Ratio=10.0)               NSM ( Ratio=10.0) 
Fig. 4 Numerical solution on ShestakovMesh  

 

V. CONCLUSION  
The theoretical analysis and numerical results show that: 

1) The accuracy of NSM is less than ADM on distorted 
meshes.  

2) The CPU time of NSM is more than ADM. When the ratio 
of the temporal step and the spatial step increase, the 
numerical errors of both methods increase. Moreover, the 
CPU time of NSM rise up obviously. 

3) The error distribution of NSM connect with the mesh 
shape. But the error distribution of ADM connect with no 
only the mesh shape, but also the alternating direction 
during the process of calculation.  

4) NSM have no limit to the type of meshes. But ADM can 
not be applied to certain types such as triangle meshes.  
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TABLE II 
NUMERICAL ERROR ANALYSIS AND CPU TIME ON KERSHAWMESH 

Ratio Scheme 
2

nE  
∞

nE  CPU Time (s) 

ADM 0.158973E-03 0.283334E-04 0.7656 r=1.0 
NSM 0.100721E-03 0.180074E-05 6.3750 
ADM 0.173888E-02 0.329751E-04 9.375E-02 r=10.0 
NSM 0.136125E-02 0.249642E-02 1.6406 

TABLE III 
NUMERICAL ERROR ANALYSIS AND CPU TIME ON SHESTAKOVMESH 

Ratio Scheme 
2

nE  
∞

nE  CPU Time (s) 

ADM 0.812127E-03 0.164725E-04 0. 875 r=1.0 
NSM 0.104844E-05 0.220449E-05 6.359 
ADM 0.348986E-04 0.710542E-04 7.812E-02 r=10.0 
NSM 0.132744E-04 0.264603E-04 1.328 
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