Thermogravimetry Study on Pyrolysis of Various Lignocellulosic Biomass for Potential Hydrogen Production
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32804
Thermogravimetry Study on Pyrolysis of Various Lignocellulosic Biomass for Potential Hydrogen Production

Authors: S.S. Abdullah, S. Yusup, M.M. Ahmad, A. Ramli, L. Ismail

Abstract:

This paper aims to study decomposition behavior in pyrolytic environment of four lignocellulosic biomass (oil palm shell, oil palm frond, rice husk and paddy straw), and two commercial components of biomass (pure cellulose and lignin), performed in a thermogravimetry analyzer (TGA). The unit which consists of a microbalance and a furnace flowed with 100 cc (STP) min-1 Nitrogen, N2 as inert. Heating rate was set at 20⁰C min-1 and temperature started from 50 to 900⁰C. Hydrogen gas production during the pyrolysis was observed using Agilent Gas Chromatography Analyzer 7890A. Oil palm shell, oil palm frond, paddy straw and rice husk were found to be reactive enough in a pyrolytic environment of up to 900°C since pyrolysis of these biomass starts at temperature as low as 200°C and maximum value of weight loss is achieved at about 500°C. Since there was not much different in the cellulose, hemicelluloses and lignin fractions between oil palm shell, oil palm frond, paddy straw and rice husk, the T-50 and R-50 values obtained are almost similar. H2 productions started rapidly at this temperature as well due to the decompositions of biomass inside the TGA. Biomass with more lignin content such as oil palm shell was found to have longer duration of H2 production compared to materials of high cellulose and hemicelluloses contents.

Keywords: biomass, decomposition, hydrogen, lignocellulosic, thermogravimetry

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1078693

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2212

References:


[1] R. Xiao, X. Chen, F. Wang, G. Yu, "Pyrolysis pretreatment of biomass for entrained-flow gasification", Applied Energy, vol. 87, pp.149-155, 2010.
[2] W. H. Chen, P. C. Kuo, "A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry", Energy, vol. 35, pp. 2580-2586, 2010.
[3] A. Zabaniotou, O. Ioannidou, E. Antonakou, A. Lappas, "Experimental study of pyrolysis for potential energy, hydrogen and carbon material production from lignocellulosic biomass", International Journal of Hydrogen Energy, vol. 33, pp. 2433-2444, 2008.
[4] S. Saka, "Whole efficient utilization of oil palm to value-added products" in Proceedings of JSPS-VCC Natural Resources & Energy Environment Seminar, Japan, 2005.
[5] G. Singh, L. K. Huan, T. Leng, D. L. Kow, Oil palm and the environment: A Malaysian perspective, Malaysia Oil Palm Growers Council 1999; pp. 41-53.
[6] H. P. HP, R. Yan, H. P. Chen, D. H. Lee, D. T. Liang, C. G. Zheng, "Pyrolysis of palm oil wastes for enhanced production of hydrogen rich gases", Fuel Processing Technology, vol. 18, pp.1814-1821,2004.
[7] B. Saumita, "Evaluation of wet air oxidation as a pretreatment strategy for bioethanol production from rice husk and process optimization", Biomass and Bioenergy, vol. 33: pp.1680-1686, 2009.
[8] E. Osorio, M. L. I. Gomez, A. C. F. Vilela, W. Kalkreuth, M. A. A. Almeida, A. G. Borrego et al, "Evaluation of petrology and reactivity of coal blends for use in pulverized coal injection (PCI)", International Journal of Coal Geology, vol. 68, pp.14-29, 2006.
[9] S. Gaur and T. B. Reed, Thermal data for natural and synthetic fuels, USA: Marcel Dekker, Inc., 1998.
[10] W. Gang, L. Wen, L. Baoqing, C. Haokan, "TG study on pyrolysis of biomass and its three components under syngas", Fuel, vol. 87, pp. 552- 558, 2008
[11] W. Yi-min, Z. Zeng-li, L. Hai-bin, H. Fang, "Low temperature pyrolysis characteristics of major components of biomass", Journal of Fuel Chemistry and Technology, vol. 37, pp. 427-432, 2009.
[12] A. Uslu, A. P. C. Faaij, P. C. A. Bergman, "Pre-treatment technologies and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation", Energy, vol. 33: 1206-1223, 2008.