WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/11803,
	  title     = {Investigation of Nickel as a Metal Substitute of Palladium Supported on HBeta Zeolite for Waste Tire Pyrolysis},
	  author    = {Lalita Saeaeh and  Sirirat Jitkarnka},
	  country	= {},
	  institution	= {},
	  abstract     = {Pyrolysis of waste tire is one of alternative technique
to produce petrochemicals, such as light olefins, mixed C4, and monoaromatics.
Noble metals supported on acid zeolite catalysts were
reported as potential catalysts to produce the high valuable products
from waste tire pyrolysis. Especially, Pd supported on HBeta gave a
high yield of olefins, mixed C4, and mono-aromatics. Due to the high
prices of noble metals, the objective of this work was to investigate
whether or not a non-noble Ni metal can be used as a substitute of a
noble metal, Pd, supported on HBeta as a catalyst for waste tire pyrolysis.
Ni metal was selected in this work because Ni has high activity
in cracking, isomerization, hydrogenation and the ring opening of
hydrocarbons Moreover, Ni is an element in the same group as Pd
noble metal, which is VIIIB group, aiming to produce high valuable
products similarly obtained from Pd. The amount of Ni was varied as
5, 10, and 20% by weight, for comparison with a fixed 1 wt% Pd,
using incipient wetness impregnation. The results showed that as a
petrochemical-producing catalyst, 10%Ni/HBeta performed better
than 1%Pd/HBeta because it did not only produce the highest yield of
olefins and cooking gases, but the yields were also higher than
1%Pd/HBeta. 5%Ni/HBeta can be used as a substitute of
1%Pd/HBeta for similar crude production because its crude contains
the similar amounts of naphtha and saturated HCs, although it gave
no concentration of light mono-aromatics (C6-C11) in the oil. Additionally,
10%Ni/HBeta that gave high olefins and cooking gases was
found to give a fairly high concentration of the light mono-aromatics
in the oil.},
	    journal   = {International Journal of Materials and Metallurgical Engineering},
	  volume    = {6},
	  number    = {4},
	  year      = {2012},
	  pages     = {260 - 264},
	  ee        = {https://publications.waset.org/pdf/11803},
	  url   	= {https://publications.waset.org/vol/64},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 64, 2012},
	}