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Abstract—Clustering is one of an interesting data mining topics
that can be applied in many fields. Recently, the problem of cluster
analysis is formulated as a problem of nonsmooth, nonconvex opti-
mization, and an algorithm for solving the cluster analysis problem
based on nonsmooth optimization techniques is developed. This
optimization problem has a number of characteristics that make it
challenging: it has many local minimum, the optimization variables
can be either continuous or categorical, and there are no exact
analytical derivatives. In this study we show how to apply a particular
class of optimization methods known as pattern search methods
to address these challenges. These methods do not explicitly use
derivatives, an important feature that has not been addressed in
previous studies. Results of numerical experiments are presented
which demonstrate the effectiveness of the proposed method.

Keywords—Clustering functions, Non-smooth Optimization, Non-
convex Optimization, Pattern Search Method.

I. INTRODUCTION

CLUSTERING is the unsupervised classification of pat-
terns (observations, data items, or feature vectors) into

groups (clusters). The clustering problem has been addressed
in many contexts and by researchers in many disciplines;
this reflects its broad appeal and usefulness as one of the
steps in exploratory data analysis. However, clustering is a
difficult problem combinatorially, and different approaches to
this problem have been proposed and studied”[1].

In cluster analysis, we are given a finite set B of points in
the d-dimensional space Rd, that is B =

{
b1, . . . , bn

}
, where

bj ∈ Rd, j = 1, · · · , n.
There are different types of clustering such as packing,

partition, covering and hierarchical clustering [2]. In this
paper we consider partition clustering, that is, the problem
of distributing points of the set B into a given number k of
separated subsets Bi �= φ with respect to predefined criteria
such that:

(i) Bi i = 1, · · · , k;
(ii) Bi ∩Bj = φ i, j = 1, · · · , k, i �= j;
(iii) B =

⋃k
i=1 Bi.

The sets Bi, i = 1, · · · , k are called clusters.
Suppose that each cluster Bi, i = 1, · · · , k can be rec-

ognized by its center (or centroid) bci ∈ Rd, i = 1, · · · , k.
Then the clustering problem can be reduced to the following
optimization problem [3],[4]:
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min ψ (bc, w) =
1
n

n∑

j=1

k∑

i=1

wij

∥∥bci − bj
∥∥ (1)

S.t bc =
(
bc1, · · · , bck

) ∈ Rd×k,∑k
i=1 wij = 1, j = 1, · · · , n,

wij = 0 or 1, for j = 1, · · · , n, i = 1, · · · , k.

where wij is the association weight of pattern bj with cluster
i, if pattern j is allocated to cluster i then wij = 1 otherwise

wij = 0 and bci =
∑n

j=1
wijbj

∑n

j=1
wij

i = 1, · · · , k.

Here ‖.‖ is an Euclidean norm and w is an n × k matrix;
also problem (1) is also known as minimum sum-of-squares
clustering problem. This problem is a global optimization
problem. Therefore different algorithms of mathematical pro-
gramming can be applied to solve this problem. In [1], [5] up-
to-date and good review of these algorithms including dynamic
programming, branch and bound, cutting planes and etc are
presented. Also different heuristics can be used for solving
large clustering problems and k-means is one such algorithm.
This is a very fast and famous algorithm in clustering and it
gives good results when there are few clusters but worsens
when there are many [2], [6].

Much better results have been obtained with metaheuristics,
such as genetic algorithm and tabu search, simulated annealing
[7]. We continue the effort to find a local optimizer for the
clustering problem so that an algorithm for clustering based
on non-smooth optimization techniques is developed in [5].
Here we introduce this algorithm, which calculates clusters
step-by-step, gradually increasing the number of data clusters
until stopping conditions are met. In this approach the clus-
tering problem is moderated to an unconstrained optimization
problem with non-smooth objective function. In the present
article we have adapted and used pattern search method to
solve this optimization problem and we are able to verify
that pattern search methods have better performance than
some of best known ways. Pattern search methods have been
widely employed in many applications. This method needs
an initial search that use heuristics to find good initial points
near some promising local minima before running the pattern
search algorithm, where it is used as a local optimizer for the
continuous variables. They generate significantly fewer invalid
solutions and also our numerical experiments show that pattern
search methods are robust. In [8] an excellent introduction and
survey of these methods can be found, which also contains
numerous references. We will review these methods in more
detail in section IV.
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Results of computational experiments using real-world
datasets are presented and we compare our results with the
best known solutions from the literature.

The article is organized as follows: In section II it is
reviewed the non-smooth optimization approach to clustering
and an algorithm for solving clustering problems. In section
III it is introduced the pattern search method for solving
optimization problems. In section IV it’s presented discussion
of the results of computational experiments and analysis them.
Finally in section V it is given concluding remarks.

II. CLUSTER ANALYSIS

”Cluster analysis is the organization of a collection of
patterns (usually represented as a vector of measurements, or
a point in a multidimensional space) into clusters based on
similarity; intuitively patterns within a valid cluster are more
similar to each other than they are to a pattern belonging to a
different cluster”[1].

Consider a set B which consists of n d-dimensional vectors
bj = (bj1, · · · , bjd) , j = 1, · · · , n. Assume that this set can be
shown as the union of k clusters. Assume also, that each cluster
can be shown by a point, which can be considered as the center
of this cluster. In order to find a cluster we should find its
center. Thus we would like to find k points which are centers of
clusters. Assume that we have a set BC, consisting of k points
bc1, · · · , bck. The distance d (bj , BC) from a point bj ∈ B to
this set is defined by d (bj , BC) = mini=1,···,k ‖bj − bci‖. The
deviation d (B, BC) from the set B to the set BC is computed
by the formula

d (B, BC) =
n∑

i=1

d (bj , BC) =
n∑

i=1

min
i=1,···,k

‖bj − bci‖

Thus the cluster analysis problem can be written in the
following problem of mathematical programming:

min g (bc1, · · · , bck) =
n∑

j=1

min
i=1,···,k

‖bj − bci‖ , (2)

S.t (bc1, · · · , bck) ∈ Rd×k.

If k > 1, the objective function g in the problem (2) is non-
convex and nonsmooth. We call g the cluster function. In [9]
it is shown that problems (1) and (2) are equivalent. Note that
the problem (1) contains both integer and continuous variables
whereas in the nonsmooth global optimization formulation of
the clustering problem (2) we have only continuous variables.
Also, note that the number of variables in problem (1) is
(n + d) × k while in problem (2) this number is only d × k
and the number of variables does not depend on the number
of instances. On the other hand in many real-world databases
the number of instances n is significantly greater than the
number of attributes d. All these conditions can be considered
as advantages of the nonsmooth optimization formulation (2).
Note that in clustering analysis, valid choice of the number of
clusters is very important and it is difficult to identify a priori
how many clusters are present in the set B under consideration;
therefore to avoid this difficulty, a step-by-step calculation
of clusters is presented and the optimization algorithm is
discussed in the following subsection.

A. An Optimization Algorithm for Solving Clustering
Problems

We will describe the following algorithm for solving cluster
analysis problems.

Algorithm 1: An algorithm for solving a cluster problem.
Step 1: (Initialization). Select a tolerance ε > 0 and an

initial point bc0 =
(
bc1

0, · · · , bcd
0

) ∈ Rd. Let k = 1, solve the
minimization problem (2). Let bc∗1 ∈ Rd be a solution to this
problem and g∗1 be the corresponding objective function value.
Set h = 1.

Step 2: (Computation of the next cluster center). Select a
starting point and solve the following minimization problem:

min gh (y) =
n∑

j=1

min {‖bc∗1 − bj‖ , · · · , ‖bc∗h − bj‖ , ‖y − bj‖}
(3)

S.t y ∈ Rd.

Step 3: (Modification of all cluster centers). Let y∗
h+1 be

a solution to problem (3). Take bc0
h+1 =

(
bc∗1, · · · , bc∗h, y∗

h+1

)

as a new starting point and solve the following minimization
problem:

min gh+1 (bc) =
n∑

j=1

min
i=1,···,h+1

‖bci − bj‖ (4)

S.t bc = (bc1, · · · , bch+1) ∈ Rd×(h+1).

Step 4: (Stopping criterion). Let bc∗h+1 be a solution to
the problem (4) and g∗h+1 be the corresponding value of the
objective function. If

g∗h − g∗h+1

g∗1
< ε

then stop, otherwise set h = h + 1 and go to Step 2.
Note that in Step 1 the center of the entire set B will

be calculated, that is, in this case the problem (2) is a
convex programming problem. In step 2, we consider previous
h cluster centers to be known, and estimate the center of
next (h + 1)-th cluster. Note also, the number of variables
in problem (3) is d which is lesser than if we calculate all
cluster centers simultaneously. In Step 3 the modification of
all h + 1 cluster centers is carried out. It should be noted
since the starting point bc0

h+1 calculated in step 2 is not far
from the solution to problem (4); therefore it takes only a
reasonable number of iterations to calculate it and this tact
reduce the computational time for solving problem (4). It is
obvious that g∗h ≥ 0 for all h ≥ 1 and the sequence {g∗h} is
decreasing, that is, g∗h+1 ≤ g∗h for all h ≥ 1. This condition
implies that after h > 0 iterations the stopping criterion in
Step 4 will be satisfied. When one tries to apply Algorithm 1,
one of the important questions is the choice of the tolerance
ε > 0. Large values of ε can result in the appearance of large
clusters while small values can produce small and artificial
clusters. Results studied in [5] show that appropriate values for
ε are

[
10−1, 10−2

]
. We will explain an optimization method

for solving problems (3) and (4) in section III.
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III. PATTERN SEARCH METHOD

Pattern search methods are a class of optimization methods
known as direct search methods. Direct search methods are
the ways for solving optimization problems that do not need
any information about the gradient of the objective function
in contrast to more traditional optimization methods that use
information about the gradient or higher derivatives to search
for an optimal point, a direct search algorithm searches a set
of points around the current point, looking for one where the
value of the objective function is lower than the value at the
current point. These methods have a rich history in science and
engineering where they have been used to many problems.
An excellent introduction and survey of these methods is
explained in [8], which also contains many references. An
attractive characteristic of the pattern search method is that it
is simple and easy to implement and it only needs the ability
to evaluate the function at a point.

A. Generalized Pattern Search Algorithms

Several generalizations of the simple pattern search method
have been suggested and studied previously [8], [10], [11],
[12]. These methods fall under the general classification of
generating set search (GSS) methods, which are categorized by
using multiple search directions computed from a generating
set. One example from this class of methods is generalized
pattern search (GPS) method. We study the notation for
GPS presented in [13], [14], and demonstrate a very brief
description of the algorithm.

Briefly at each step, the algorithm searches a set of points,
called a mesh, around the current point-the point computed
at the previous step of the algorithm. The mesh is formed by
adding the current point to a scalar multiple of a set of vectors
called a pattern. If the pattern search algorithm finds a point
in the mesh that improves the objective function at the current
point, the new point becomes the current point at the next step
of the algorithm.

Any instance of a GPS algorithm needs the following
parameters:

• Initial point y0 ∈ Rn (with finite value g (y0) ) and mesh
size parameter Δ0 > 0 in R.

• Non-singular generating matrix D ∈ Rn×n and a n × p
matrix Z ⊂ Zn×p whose columns form a positive
spanning set.

• Mesh updates parameters α ∈ Q and ω−, ω+ ∈ Z with
α > 1, ω+ ≥ 0, ω− ≤ −1.

Let g be the objective function. Starting from an initial guess
y0 and an initial value Δ0 of the step length control parameter,
a GPS method generates a sequence of iterates {yk} such
that g (yk+1) ≤ g (yk) . Each trial point where the algorithm
evaluates g must lie on the current mesh, defined by

Mk = {yk + ΔkHz : z ∈ Np} , where H = DZ (5)

and where Δk > 0 is the mesh size parameter at iteration k.
At each iteration, trial points can be produced in two steps.
The difference between the two steps is in the way the trial
points are elected. In the first step, called the Search, any

finite strategy can be applied to find a mesh point that gives a
lower objective function value than the incumbent as long as
only finitely many trial points are selected. When a trial point
yk+1 ∈ Mk satisfying g (yk+1) < g (yk) is found, then yk+1

is said to be an improved mesh point, and the Search Step can
be stopped.

At whatever time the Search Step fails to generate an im-
proved mesh point, a second step, called the Poll, is performed
before the iteration is completed. In this phase the objective
function is evaluated at the neighboring mesh points to see if
a lower value can be found there. The set of neighboring mesh
points (called the Poll Set) is made using a positive spanning
matrix Hk composed of columns of the finite set H (defined
in Eq.(5) ):

Pollset : {yk + Δkh : h ∈ Hk} ⊂Mk. (6)

If the poll set includes a trial point yk+1 ∈ Mk such that
g (yk+1) < g (yk) then, as in the Search Step yk+1 is said to
be an improved mesh point, and the Poll Step can be stopped.

If both the Search and the Poll steps do not succeed to
generate an improved mesh point, then the current incumbent
solution yk is said to be a mesh local optimizer (i.e., its
objective function value is less than or equal to that of all
points from the poll set). Then the algorithm updates the mesh
by setting the mesh size parameter Δk+1 = αωkΔk where
ωk ∈ Z and

ω− ≤ ωk ≤ −1 (7)

and therefore 0 < αωk < 1.Otherwise if either the Search or
Poll step generates an improved mesh point, then the new point
yk+1 �= yk has a strictly lower objective function value, then
the mesh size parameter is kept the same or is increased, and
the process is repeated. It follows that if yk+1 is an improved
mesh point, then the later iterates can never return to previous
iterates: yj �= yl and g (yj) > g (yl) for any j ≤ k and l > k.
The roughening of the mesh follows the rule Δk+1 = αωkΔk

where ωk ∈ N and

0 ≤ ωk ≤ ω+ (8)

and therefore αωk ≥ 1. These generalizations allow for great
freedom in using the GPS method and can have a significant
impact on the efficiency of the algorithm. Then the GPS
method can be described as follows:

Algorithm 2: A basic GPS algorithm
1) Initialization: Let y0 be such that g (y0) is finite, and

let M0 be the mesh on Rn defined by Δ0 > 0 and let
H0, ω

−, ω+, α, D, H, Z satisfy the requirements given
above. Set the iteration counter k to 0.

2) Search and Poll Step: Execute the Search and possibly
the Poll steps (or only part of them if an improved mesh
point is found on the mesh defined by (5)).

a) Optional Search: Evaluate g on a finite subset of
trial points on the mesh Mk.

b) Local Poll: Evaluate g on the poll set defined in
(6).

3) Parameter Update: If the Search or Poll step gener-
ated an improved mesh point, yk+1 ∈ Mk for which
g (yk+1) < g (yk), then update Δk+1 ≥ Δk according
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to rule (8). Otherwise, g (yk) ≤ g (yk + Δkh) for all
h ∈ Hk and so yk is a mesh local optimizer; set
yk+1 = yk, update Δk+1 < Δk according to rule (7).
Increase k ← k + 1 and go back to the Search and Poll
step.

Each step of the GPS algorithm can be specified even
further. For example, in step 1 the lengths of the vectors in
the generating set can take on any values between specified
lower and upper bounds. Note the search strategy is the key
to effectiveness. Especially in practice it allows the use of
heuristic and surrogate methods to explore the domain of the
variables. For example, one might apply a few generations of
a genetic algorithm on the mesh to g or any other physics-
based approach that seems suitable. Also using the search
method reduces the total function count-the number of times
the objective function was evaluated.

IV. RESULTS AND DISCUTION

To verify the efficiency of the proposed algorithms a number
of numerical experiments with real-world data sets have been
carried out on a PC, Intel(R) Core2Duo CPU,1.95GB of RAM.
In our calculations, we apply Algorithm 2 for solving problems
of clustering. As mentioned before, mesh set plays the main
role in GPS algorithm. Therefore we apply some methods in
order to form patterns (directions) in mesh set, for both steps
(poll and search). The patterns are the Positive basis 2n and the
Positive basis n+1 selected in regular form and random, where
n is the number of independent variables for the objective
function. Positive basis 2n regular pattern is formed using
the positive and negative of the linearly independent identity
vectors {ei,−ei|i = 1, · · · , n}. As mentioned earlier, linearly
independent identity vectors can be generated using a random
permutation of an n-by-n linearly independent lower triangular
matrix that is regenerated at each iteration (as mentioned in
before part). So we tested 5 type of algorithm GPS for solving
clustering problem:

• GPS1 is the Algorithm 2 that in search step, positive basis
random n + 1 is applied for directions of mesh set and
positive basis random 2n is applied for directions of mesh
set in poll step.

• GPS2 is the Algorithm 2 that in search step, positive basis
regular n + 1 is applied for directions of mesh set and
positive basis regular 2n is applied for directions of mesh
set in poll step.

• GPS3 is the Algorithm 2 that genetic algorithm is used
for search step, and positive basis regular 2n is applied
for directions of mesh set in poll step.

• GPS4 is the Algorithm 2 that Nelder-Mead algorithm
is used for search step, and positive basis regular 2n is
applied for directions of mesh set in poll step.

• GSP5 is the Algorithm 2 that search step is empty, and
positive basis regular 2n is applied for directions of mesh
set in poll step.

Also, we consider four standard test problems to compare our
algorithm with the following heuristics and metaheuristics: the
tabu search method (TS), a genetic algorithm (GA) and the

simulated annealing (SA) method, the k-means algorithm (K-
M). We use the results obtained by using TS, GA, SA and
K-M in [15] for comparison. It should be noted that SA, GA
and TS have been applied to problem (1) which is equivalent
to the nonsmooth optimization formulation of a clustering
problem. In Tables we report the best known value for the
global minimum. The error E is considered as

E =
(ḡ − gopt)

gopt

where gopt and g indicate the best known solution and the
function value obtained by the algorithm respectively. In these
tables Q represents the number of clusters and the following
datasets are used in numerical experiments and they can be
found in [4]:

• German towns database (m = 59, n = 2) ;
• First Bavarian postal zones data set ( m = 89, n = 3) ;
• Second Bavarian postal zones data set (m = 89, n = 4);
The results presented in Table I show that for this data set,

GPS1 achieve the same or better results than all algorithms
mentioned except for Q = 2. TS and GA and SA are
approximately better than GPS2 and GPS3 but the result of
GPS2 is better than K-M and also GPS3 is better than K-M
except for Q = 2. The results presented in Table I explain that
GPS4 for Q = 2, 4 is the same as TS,GA,SA but for Q = 5,
GPS4 is better than these methods and for Q = 3 GPS4 is
worse. Also GPS4 is better than K-M. The results from GPS5
and TS are similar except for Q = 3; also the results of GPS5
and GA and SA are same except for Q = 3. But result of
GPS5 is better than K-M except for Q = 3.

From Table II we can see that GPSi i = 1, · · · , 5 are better
than all algorithms except GPSi i = 2, 3, 4 are similar with
GA.

The results presented in Table III explain that for this data
set, GPS1 achieves better results than the K-M and SA and TS
except for Q = 5 and the same with GA. The results obtained
by our experiment GPS2 and GPS3 are the same, however
they are better than those obtained by K-M and SA and TS
and also these are the same with GA except for Q = 5 that
GPS2 is better. The results from GPS4 for Q = 2 show that
it is almost the same for all other algorithms and for Q = 3,
TS and GA and SA are better than GPS4; also for Q = 4 it
is the same with TS and GA but it is better than K-M and
SA, and also for Q = 5 the result of TS is better than GPS4.
Therefore it is almost better than GA, SA, K-M. The results
of table III show that TS is better than GPS5 and results of
GPS5 and GA are the same except for Q = 5 that GPS5 is
better and also GPS5 is better than SA and K-M. Based on the
results presented in Tables [I, II, and III], we can conclude that
at least for these three data sets, GPSi i = 1, · · · , 5 work
better than the k-means algorithm and achieve closer, similar
and sometimes better results than the genetic and simulated
annealing and tabu search algorithms for solving clustering
problem.

V. CONCLUSION

In this paper is studied an algorithm for solving a clustering
problem where the problem is treated as a non smooth,
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TABLE I
RESULTS FOR GERMAN TOWNS DATA SET

Q fopt TS GA SA K-M GPS1 GPS2 GPS3 GPS4 GPS5
2 2.1426 × 104 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 7.009 × 103 0.00 0.00 0.29 1.45 1.45 0.29 18.08 0.35 18.08
4 49.601 × 103 0.00 0.00 0.00 0.55 0.00 0.24 0.23 0.00 0.00
5 39.453 × 103 0.00 0.15 0.15 2.75 −1.86 0.00 0.14 −1.86 0.00

TABLE II
RESULTS FOR FIRST BAVARIAN POSTAL ZONES DATA SET

Q fopt TS GA SA K-M GPS1 GPS2 GPS3 GPS4 GPS5
2 60.255 × 1010 0.00 0.00 0.00 7.75 0.00 0.00 0.00 0.00 0.00
3 29.451 × 1010 23.48 23.48 23.48 23.48 0.00 23.48 23.48 23.44 23.48
4 10.447 × 1010 18.14 0.00 0.39 66.88 0.00 0.00 0.00 0.00 −0.28
5 59.762 × 109 33.35 0.00 40.32 35.32 0.00 0.00 0.00 0.00 0.00

TABLE III
RESULTS FOR SECOND BAVARIAN POSTAL ZONES DATA SET

Q fopt TS GA SA K-M GPS1 GPS2 GPS3 GPS4 GPS5
2 9.9080 × 109 0.00 144.25 144.25 144.25 144.28 144.28 144.28 144.28 144.28
3 7.3987 × 109 0.00 0.00 77.77 106.79 0.00 106.78 106.78 106.78 0.00
4 5.5908 × 108 0.00 0.00 9.13 303.67 0.00 0.00 0.00 0.00 0.00
5 4.0379 × 108 5.76 15.76 18.72 446.13 15.76 0.00 0.00 15.76 0.00

non convex optimization problem. The proposed algorithm
calculates clusters step by step and it allows the decision
maker to easily change the number of clusters according
to the criteria considered by the nature of decision making
issue not incurring the clear costs of the increased complexity
of the solution procedure. The generalized pattern search
(GPS) method has been applied in different ways to solve
the non smooth optimization problems of clustering algorithm.
Our evaluations show that GPS optimization methods are
promising candidates for clustering of datasets. Evaluations
of the numerical experiments is presented in this paper show
that the GPS method exhibits a better performance than some
efficient heuristic algorithms used for cluster analysis and also
metaheuristic approaches to a global optimization at least for
the datasets is used in this paper.
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