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Abstract—In this paper, an alternating implicit block method for
solving two dimensional scalar wave equation is presented. The
new method consist of two stages for each time step implemented
in alternating directions which are very simple in computation. To
increase the speed of computation, a group of adjacent points is
computed simultaneously. It is shown that the presented method
increase the maximum time step size and more accurate than the
conventional finite difference time domain (FDTD) method and other
existing method of natural ordering.

Keywords—FDTD, Scalar wave equation, alternating direction
implicit (ADI), alternating group explicit (AGE), asymmetric approx-
imation.

I. INTRODUCTION

Finite difference time domain (FDTD) method is one of the
most commonly numerical methods used for solving various
type of electromagnetic problems [1]. Recently, a reduced
scalar version of the FDTD method was developed by Aoyagi
et. al [2] in source free region. In comparison with the FDTD
method, the new version called the scalar wave equation finite
difference time domain (WE-FDTD) requires less computation
and storage. As both the FDTD and WE-FDTD methods are
based on an explicit finite difference algorithm, the Courant-
Friedrichs-Lewy (CFL) condition must be satisfied. A maxi-
mum time step size is limited by the minimum cell size in
a computational domain. To overcome this problem, implicit
methods must be employed which have no limit on the time-
step size arising from the stability consideration. Alternating
direction implicit (ADI) methods are mostly investigated be-
cause of their unconditionally stability and high efficiency for
solving higher dimensional problems.

The ADI methods was first introduced by Peaceman, Rach-
ford and Douglas in ([4],[3]) for heat equations in two dimen-
sions and was later applied extensively in many numerical
approximation problems. Since the ADI methods only need
to solve a sequence of tridiagonal linear systems therefore the
methods save much computer memory and CPU time. Due to
high computational cost especially for large scale problems,
Evans [3] has developed a group explicit strategy for solution
to the partial differential equations. The strategy is based
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on stable fully explicit asymmetric schemes introduced by
Saul’yev [5], which coupled in groups of adjacent points on
the grid. The groups of points are solved in implicit equations
which can be easily converted to explicit form. Combining the
ADI methods with group explicit strategy would increase the
efficiency such as discussed in ([6],[7]).

In this paper, we consider the following two-dimensional
scalar wave equation problem on rectangular solution domain
Ω = [0, 1] × [0, 1]

∂2u

∂t2
= c2

0

[
∂2u

∂x2
+

∂2u

∂y2

]
(1)

where c0 is the speed of light in free space medium and
u is field component function. In section II, we derive an
alternating direction implicit method of (1) with truncation
error O(h2 + k2) and present a solving formula for group of
adjacent points using asymmetric scheme. In section III, we
provide the numerical experiment to illustrate the effectiveness
of the the new method and compare it with some other existing
methods of natural ordering strategy. The conclusions are
given at the end section of the paper.

II. MATHEMATICAL FORMULATION

Introducing v = ∂u
∂t , we can rewrite (1) as follows

∂v

∂t
= c2

0

[
∂2u

∂x2
+

∂2u

∂y2

]
(2)

where (x, y) ∈ Ω, t ∈ (0, T ]. The domain Ω is divided into
a uniform grid size h = 1

M in both space directions and
time increment k = T

N which M and N are both positive
integers. Grid points is denoted as un

i,j = u(ih, jh, nk), vn
i,j =

v(ih, jh, nk) for i, j = 0, 1, 2, . . . ,M , n = 1, 2, . . . , N .
The solution of (2) using a simple alternating direction

implicit method by Peaceman & Rachford [4] is obtained in
two stages as follows

i) Stage 1 ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v
n+1/2
i,j − vn

i,j

k
= c2

0

∂2u

∂x2
(3)

νn
i,j + ν

n+1/2
i,j

4
=

v
n+1/2
i,j − vn

i,j

k
(4)

ii) Stage 2 ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vn+1
i,j − v

n+1/2
i,j

k
= c2

0

∂2u

∂y2
(5)

νn+1
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n+1/2
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4
=
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n+1/2
i,j

k
(6)
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where v is obtained using a simple weighted average between
time level (n), (n+1/2) and (n+1). The time level (n+1/2)
is called an intermediate time level. The solution for each stage
is computationally feasible as it only requires the solution of
sets of tridiagonal equations along lines parallel to the x and
y axes.

For the first stage, consider a group of two adjacent points
along x axis i.e (i, j) and (i + 1, j). Then at each point, we
approximate (3) using asymmetric discretization in [5] and
combining with (4), we obtain a set of equations as follows

(4 + λ2)un+1/2
i,j − λ2u

n+1/2
i+1,j

= (4 − λ2)un
i,j + λ2un

i−1,j + 2kνn
i,j (7)

(4 + λ2)un+1/2
i+1,j − λ2u

n+1/2
i,j

= (4 − λ2)un
i,j + λ2un

i+2,j + 2kνn
i+1,j (8)

where λ = c0k/h. Equations (7-8) can be solved explicitly
whose the implicit system is given by[

4 + λ2 −λ2

−λ2 4 + λ2

] [
ui,j

ui+1,j

]n+1/2

=
[

α1

α2

]
(9)

Therefore the solving formula for a group of two points
sweeping in x direction at intermediate time level n + 1/2
is given by[

ui,j

ui+1,j

]n+1/2

=
1
r

[
4 − λ2 0

0 4 − λ2

] [
α1

α2

]
(10)

where r = 16 + 8λ2 and

α1 = (4 − λ2)un
i,j + λ2un

i−1,j + 2kνn
i,j

α2 = (4 − λ2)un
i+1,j + λ2un

i+2,j + 2kνn
i+1,j

Similarly, for the next stage we can obtain the solving formula
sweeping in y direction at time level n+1 for a group of two
adjacent points i.e (i, j), (i, j + 1) as follows[

ui,j

ui,j+1

]n+1

=
1
r

[
4 − λ2 0

0 4 − λ2

] [
β1

β2

]
(11)

where

β1 = (12 − λ2)un+1/2
i,j + λ2u

n+1/2
i,j−1 − 8un

i,j − 2kνn
i,j

β2 = (12 − λ2)un+1/2
i,j+1 + λ2u

n+1/2
i,j+2 − 8un

i,j+1 − 2kνn
i,j+1

The solution vector v is given by

vn+1
i,j = 4(

un+1
i,j − 2u

n+1/2
i,j − un

i,j

k
) + vn

i,j

The local truncation error of the scheme in each stage is
approximately of order O(h2 + k2).

III. NUMERICAL EXPERIMENT

In this section, we present the numerical experiment of
the proposed method for solving (1) on the solution region
Ω = [0, 1] × [0, 1] surrounded by PEC boundary conditions.
The results by the proposed method are compared with the
conventional FDTD and 4pEG-FDTD methods in ([1],[8]).
The exact solution of the problem is given by

u(x, y, t) =
√

2 cos(
√

2πt) sin[π(1 − x)] sin[π(1 − y)]
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Fig. 1. Comparison result of Ez field after 20 time steps with λ = 0.5

TABLE I
PERFORMANCE OF FDTD, 4PEG AND 2PEG-ADI METHODS USING GRID

CELL 81 × 81 AFTER 10 TIME STEPS

Scheme k M.E A.A.E

FDTD 2h - -

h 2.019e-2 8.424e-3
h
2

7.661e-3 1.257e-4
h
4

1.326e-3 5.536e-4

4pEG(N) 2h 9.014e-3 1.565e-3

h 7.970e-4 2.559e-4
h
2

1.907e-4 6.522e-5
h
4

4.196e-5 1.991e-5

S-2pEG(N) 2h 1.360e-3 4.594e-4

h 3.855e-4 1.272e-4
h
2

9.302e-5 3.438e-5
h
4

2.148e-5 9.954e-6

The experiment is carried out on 81 × 81 grid cell using
different values of courant number λ to test the accuracy
and stability of the presented method. The performance of
the methods are given in the figure 1 and table I. From the
results, it is apparent that the presented method is generally
more accurate than the other existing methods (FDTD, 4pEG-
FDTD). Furthermore the new method increase the maximum
time step size, which is more stable than the conventional
FDTD method.

IV. CONCLUSION

A new stable alternating direction implicit block with group
explicit strategy is developed for the solution of scalar wave
equation. This method has several advantages such as good
parallelism and better accuracy than its conventional FDTD
method.
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