WASET
	%0 Journal Article
	%A R. D. Kulkarni and  Mayur Chaudhari and  S. Mishra
	%D 2008
	%J International Journal of Chemical and Molecular Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 19, 2008
	%T Kinetic, Thermodynamic and Process Modeling of Synthesis of UV Curable Glyceryl and Neopentyl Glycol Acrylates
	%U https://publications.waset.org/pdf/10731
	%V 19
	%X Curing of paints by exposure to UV radiations is
emerging as one of the best film forming technique as an alternative
to traditional solvent borne oxidative and thermal curing coatings.
The composition and chemistry of UV curable coatings and role of
multifunctional and monofunctional monomers, oligomers, and
photoinitiators have been discussed. The limitations imposed by
thermodynamic equilibrium and tendency for acrylic double bond
polymerizations during synthesis of multifunctional acrylates have
been presented. Aim of present investigation was thus to explore the
reaction variables associated with synthesis of multifunctional
acrylates. Zirconium oxychloride was evaluated as catalyst against
regular acid functional catalyst. The catalyzed synthesis of glyceryl
acrylate and neopentyl glycol acrylate was conducted by variation of
following reaction parameters: two different reactant molar ratios-
1:4 and 1:6; catalyst usage in % by moles on polyol- 2.5, 5.0 and 7.5
and two different reaction temperatures- 45 and 75 0C. The reaction
was monitored by determination of acid value and hydroxy value at
regular intervals, besides TLC, HPLC, and FTIR analysis of
intermediates and products. On the basis of determination of reaction
progress over 1-60 hrs, the esterification reaction was observed to
follow 2nd order kinetics with rate constant varying from 1*10-4 to
7*10-4. The thermal and catalytic components of second order rate
constant and energy of activation were also determined. Uses of
these kinetic and thermodynamic parameters in design of reactor for
manufacture of multifunctional acrylate ester have been presented.
The synthesized multifunctional acrylates were used to formulate and
apply UV curable clear coat followed by determination of curing
characteristics and mechanical properties of cured film. The overall
curing rates less than 05 min. were easily attained indicating
economical viability of radiation curable system due to faster
production schedules
	%P 116 - 121