Mutational Effect to Particular Interaction Energy of Cycloguanil Drug to Plasmodium Plasmodium Falciparum Dihydrofolate Reductase Enzymes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Mutational Effect to Particular Interaction Energy of Cycloguanil Drug to Plasmodium Plasmodium Falciparum Dihydrofolate Reductase Enzymes

Authors: A. Maitarad, P. Maitarad

Abstract:

In order to find the particular interaction energy between cylcloguanil and the amino acids surrounding the pocket of wild type and quadruple mutant type PfDHFR enzymes, the MP2 method with basis set 6-31G(d,p) level of calculations was performed. The obtained interaction energies found that Asp54 has the strongest interaction energy to both wild type and mutant type of - 12.439 and -11.250 kcal/mol, respectively and three amino acids; Asp54, Ile164 and Ile14 formed the H-bonding with cycloguanil drug. Importantly, the mutation at Ser108Asn was the key important of cycloguanil resistant with showing repulsive interaction energy.

Keywords: Cycloguanil, DHFR, malaria disease, interactionenergy, quantum calculations

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1075464

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366

References:


[1] P. L. Olliaro, and Y. Yuthavong, "An overview of chemotherapeutic targets for antimalarial drug discovery," Pharmacol. Ther., vol. 81, pp. 91-110, 1999.
[2] Y. Yuthavong, S. Kamchonwongpaisan, U. Leartsakulpanich and P. Chitnumsub, "Folate Metabolism as a Source of Molecular Targets for Antimalarials," Future Microb. vol. 1, no.1, pp. 113-125, 2006.
[3] A. Nzila, "Inhibitors of De-novo Folate Enzymes in Plasmodium falciparum," Drug Discov. Today, vol. 11, pp. 936-944, 2006.
[4] K.Militello, M. Dodge, L. Bethke and D. F. Wirth, "Identification of regulatory elements in the Plasmodium falciparum genome," Mol. Biochem. Parasitol, vol. 134, pp. 75-88, 2004.
[5] T. Dasgupta, and K. S. Anderson, "Probing the Role of Parasite- Specific, Distant Structural Regions on Communication and Catalysis in the Bifunctional Thymidylate Synthase- Dihydrofolate Reductase from Plasmodium falciparum," Biochemistry, vol. 47, no. 5, pp. 1336-1345, 2008.
[6] A. Nzila, "The Past, Present and Future of Antifolates in the Treatment of Plasmodium falciparum Infection," J. Antimicrob Chemother, vol. 57, pp. 1043-1054, 2006.
[7] R.T. Delfino, O. A. Santos-Filho and J. D. Figueroa-Villar, "Type 2 antifolates in the chemotherapy of falciparum malaria," J. Braz. Chem. Soc. vol. 13, pp. 727-741, 2002.
[8] Y. Yuthavong, "Basic for antifolate action and resistance in malaria. Microbes Infect," vol. 4, pp. 175-182, 2002.
[9] Y. Yuthavong, J. Yuvaniyama, P. Chitnumsub, J. Vanichtanankul, S. Chusacultanachai, B. Tarnchompoo, T. Vilaivan and S. Kamchonwongpaisan, "Malarial (Plasmodium falciparum) dihydrofolate reductase-thymidylate synthase: structural basis for antifolate resistance and development of effective inhibitors," Parasitology, vol. 130, pp. 249-259, 2005.
[10] L. K. Basco, P. E. Pecoulas, C. M. Wilson, J. L. Bras and A. Mazabraud, "Point mutations in the dihydrofolate reductase-thymidylate synthase gene and pyrimethamine and cycloguanil resistance in Plasmodium falciparum," Mol. Biochem. Parasitol, vol. 69, pp. 135-138, 1995.
[11] D. S. Peterson, W. K. Milhous and T. E. Wellems, "Molecular basis of differential resistance to cycloguanil and pyrimethamine in Plasmodium falciparum malaria," Proc. Natl. Acad. Sci. U.S.A., vol. 87, pp. 3018- 3022, 1990.
[12] A. Gregson, and C.V. Plowe, "Mechanisms of Resistance of Malaria Parasites to Antifolates," Pharmacol. Rev. vol. 57, pp. 117-145, 2005.
[13] I. M. Hastings, and M. J. Donnelly, "The impact of antimalarial drug resistance mutations on parasite fitness, and its implications for the evolution of resistance," Drug Resist. Updat, vol. 8, pp. 43-50, 2005.
[14] G.Rastelli, S. Sirawaraporn, P. Sompornpisut, T. Vilaivan, S. Kamchonwongpaisan, R. Quarrell, G. Lowe, Y. Thebtaranonth and Y. Yuthavong, "Interaction of pyrimethamine, cycloguanil, WR99210 and their analogues with Plasmodium falciparum dihydrofolate reductase: structural basis of antifolate resistance," Bioorg. Med. Chem. vol. 8, pp. 1117-1128, 2000.
[15] W. Sirawaraporn, T. Sathitkul, R. Sirawaraporn, Y. Yuthavong and D.V. Santi, "Antifolate-resistant mutants of plasmodium falciparum dihydrofolate reductase," Proc. Natl. Acad. Sci. vol. 94, pp. 1124-1129, 1997.
[16] J. Yuvaniyama, P. Chitnumsub, S. Kamchonwongpaisan, J. Vanichtanankul, S. Sirawaraporn, P. Taylor, M. D. Walkinshaw and Y. Yuthavong, "Insights into antifolate resistance from malarial DHFR-TS structures," Nat. Struct. Bio,. vol. 10, pp. 357-365, 2003.
[17] G. B. Fogel, M. Cheung, E. Pittman and D. Hecht, "Modeling the inhibition of quadruple mutant Plasmodium falciparum dihydrofolate reductase by pyrimethamine derivatives," J. Comput Aided Mol Des, vol. 22, pp. 29-38, 2008.
[18] S. Kamchonwongpaisan, R. Quarrell, N. Charoensetakul, R. Ponsinet, T. Vilaivan, J. Vanichtanankul, B. Tarnchompoo, W. Sirawaraporn, G. Lowe and Y. Yuthavong, "Inhibitors of multiple mutants of plasmodium falciparum dihydrofolate reductase and their antimalarial activities," J. Med. Chem, vol. 47, pp. 673-680, 2004.
[19] M. D. Parenti, S. Pacchioni, A. M. Ferrari, and G. Rastelli, "Three- Dimensional Quantitative Structure-Activity Relationship Analysis of a Set of Plasmodium falciparum Dihydrofolate Reductase Inhibitors Using a Pharmacophore Generation Approach," J. Med. Chem, vol. 47, pp. 4258-4267, 2004.
[20] P. Maitarad, P. Saparpakorn, , S. Hannongbua, S. Kamchonwongpaisan, B. Tarnchompoo, Y. Yuthavong, "Particular Interaction between Pyrimethamine Derivatives and Quadruple Mutant Type Dihydrofolate Reductase of Plasmodium falciparum: CoMFA and Quantum Chemical Calculations Studies," J. Enzyme. Inhibition and Medicinal Chemistry, 2008, in press.