WASET
	%0 Journal Article
	%A Manjeet Bansal and  Diwan Singh and  V.K.Garg and  Pawan Rose
	%D 2009
	%J International Journal of Civil and Environmental Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 27, 2009
	%T Use of Agricultural Waste for the Removal of Nickel Ions from Aqueous Solutions: Equilibrium and Kinetics Studies
	%U https://publications.waset.org/pdf/10484
	%V 27
	%X The potential of economically cheaper cellulose
containing natural materials like rice husk was assessed for nickel
adsorption from aqueous solutions. The effects of pH, contact time,
sorbent dose, initial metal ion concentration and temperature on the
uptake of nickel were studied in batch process. The removal of nickel
was dependent on the physico-chemical characteristics of the
adsorbent, adsorbate concentration and other studied process
parameters. The sorption data has been correlated with Langmuir,
Freundlich and Dubinin-Radush kevich (D-R) adsorption models. It
was found that Freundlich and Langmuir isotherms fitted well to the
data. Maximum nickel removal was observed at pH 6.0. The
efficiency of rice husk for nickel removal was 51.8% for dilute
solutions at 20 g L-1 adsorbent dose. FTIR, SEM and EDAX were
recorded before and after adsorption to explore the number and
position of the functional groups available for nickel binding on to
the studied adsorbent and changes in surface morphology and
elemental constitution of the adsorbent. Pseudo-second order model
explains the nickel kinetics more effectively. Reusability of the
adsorbent was examined by desorption in which HCl eluted 78.93%
nickel. The results revealed that nickel is considerably adsorbed on
rice husk and it could be and economic method for the removal of
nickel from aqueous solutions.
	%P 174 - 180