Silicon Application and Nitrogen on Yield and Yield Components in Rice (Oryza sativa L.) in Two Irrigation Systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Silicon Application and Nitrogen on Yield and Yield Components in Rice (Oryza sativa L.) in Two Irrigation Systems

Authors: Abbas Ghanbari-Malidareh

Abstract:

Silicon is a beneficial element for plant growth. It helps plants to overcome multiple stresses, alleviates metal toxicity and improves nutrient imbalance. Field experiment was conducted as split-split plot arranged in a randomized complete block design with four replications. Irrigation system include continues flooding and deficit as main plots and nitrogen rates N0, N46, N92, and N138 kg/ha as sub plots and silicon rates Si0 & Si500 kg/ha as sub-subplots. Results indicate that grain yield had not significant difference between irrigation systems. Flooding irrigation had higher biological yield than deficit irrigation whereas, no significant difference in grain and straw yield. Nitrogen application increased grain, biological and straw yield. Silicon application increased grain, biological and straw yield but, decreased harvest index. Flooding irrigation had higher number of total tillers / hill than deficit irrigation, but deficit irrigation had higher number of fertile tillers / hill than flooding irrigation. Silicon increased number of filled spikelet and decreased blank spikelet. With high nitrogen application decreased 1000-grain weight. It can be concluded that if the nitrogen application was high and water supplied was available we could have silicon application until increase grain yield.

Keywords: Grain yield, Irrigation, Nitrogen, Rice, Silicon.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1329551

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3205

References:


[1] Koutroubas, S.D. and D.A. Ntanos, 2003. Genotype differences for grain yield and nitrogen utilization in indica and japonica rice under Mediterranean conditions. Field Crops Res., 83:251-260.
[2] Tirol-Padre, A., J.K. Ladha, U. Singh, E. Laureles, G. Punzalan and S. Akita, 1996. Grain yield performance of rice genotypes at suboptimal levels of soil N as affected by N uptake and utilization efficiency. Field Crops Res., 46:127-143.
[3] Dalling, M.J., 1985. The physiological basis of nitrogen redistribution during filling in cereals. p. 55-71. In J.E. Harper et al. (ed.) Exploitation of physiological and genetic variability to enhance crop productivity. Am. Soc. of Plant Physiologists, Rockville, MD.
[4] Mae, T., 1997. Physiological nitrogen efficiency in rice: Nitrogen utilization, photosynthesis, and yield potential. Plant Soil, 196:201-210.
[5] Liu, D., 1991. Efficient use of nitrogen in crop production. Ext. Bull. 340. Food & Fertilizer Technology Center, Taiwan.
[6] Saito, M., 1991. Soil management for the conservation of soil nitrogen. Ext. Bull. 341. Food & Fertilizer Technology Center, Taiwan.
[7] Senanayake, N., R.E.L. Naylor, S.K. De Datta and W.J. Thomson, 1994. Variation in development of contrasting rice cultivars. J. Agric. Science, 123:35-39.
[8] Bohlool, B.B., J.K. Ladha, D.P. Garrity, and T. George, 1992. Biological nitrogen fixation for sustainable agriculture: A perspective. Plant Soil, 141:1-11.
[9] Singh, U., J.K. Ladha, E.G. Castillo, G. Punzalan, A. Tirol-Padre and M. Duqueza. 1998. Genotypic variation in nitrogen use efficiency in medium and long-duration rice. Field Crops Res., 58:35-53.
[10] Mosse, J., 1990. Nitrogen to protein conversion factor for ten cereals and six legumes or oilseeds. A reappraisal of its definition and determination. Variation according to species and to seed protein content. J. Agric. Food Chem., 38:18-24.
[11] Obanni, M., C. Mitchell and D. Medcalf. 1998. Healthy ingredients and foods from rice. Cereal Foods World, 43:696-698.
[12] Deren, C.W., L.E. Datnoff, G.H. Snyder and F.G. Martin, 1994. Silicon concentration, disease response, and yield components of rice genotypes grown on flooded organic Histosols. Crop Science, 34:733- 737.
[13] Savant, N.K., L.E. Datnoff and G.H. Snyder, 1997. Depletion of plantavailable silicon in soils: A possible cause of declining rice yields. Commun. Soil Science Plant Anal., 28:1245-1252.
[14] Mauad, M., C.A.C. Crusciol, H. Grassi Filho and J.C. Correa, 2003. Nitrogen and silicon fertilization of upland rice. Scientia Agricola, 60: 761-765-.
[15] Yoshida, S., Y. Ohnishi, K. Kitagishi, 1962. Chemical forms, mobility and deposition of silicon in rice plant. Soil Science and Plant Nutrition, 8:15-21.
[16] Yoshida, S., S.A. Naveser, E.A. Ramirez, 1969. Effects of silica and nitrogen supply on some leaf characters of rice plant. Plant and Soil, 31:48-56.
[17] Ma, J.F., K. Nishimra, E. Takahashi, 1989. Effect of silicon on the growth of rice plant at different growth stages. Soil Science and Plant Nutrition, 35:347-356.
[18] Takahashi, E., 1995. Uptake mode and physiological functions of silica. In: Matusuo, T., K. Kumazawa, R. Ishii, K. Ishihara, H Hirata, Science of rice plant physiology. Tokio: Nobunkyo, 2(5):420-433.
[19] Balastra, M.L.F., C.M. Perez, B.O. Juliano, P. Villreal, 1989. Effects of sílica level on some proprieties of Oriza sativa straw and hult. Canadian Journal of Botany, 67:2356-2363.
[20] Ma, J.F., 2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci. Plant Nutr., 50:11-18.
[21] Datnoff, L.E., C.W. Deren and G.H. Snyder, 1997. Silicon fertilization for disease management of rice in Florida. Crop Protection, 16:525-531.
[22] Ma, J.F. and E. Takahashi, 2002. Soil, fertilizer, and plant silicon research in Japan. Amsterdam: Elsevier Science.
[23] Epstein, E., 1999. Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol., 50:641-664.
[24] Seebold, K., L.E. Datnoff, V.F. Correa and G.H. Snyder, 1995. Effects of silicon and fungicides on leaf and neck blast development in rice. (Abstr.) Phytopathology, 85:1168.
[25] Seebold, K.W., L.E. Datnoff, F.J. Correa-Victoria, T.A. Kucharek, and G.H. Snyder, 2000. Effect of silicon rate and host resistance on blast, scald, and yield of upland rice. Plant Dis., 84:871-876.
[26] De Datta, S.K., 1981. Principles and Practices of Rice Production. John Wiley & Sons, New York.
[27] Thurston, H.D., 1984. Rice blast. Pages 31-40 in: Tropical Plant Diseases. American Phytopathological Society, St. Paul, MN.
[28] Bonman, J. M., B. A. Estrada, C. K. Kim, D.S. Ra and E.J. Lee, 1991. Assessment of blast disease and yield loss in susceptible and partially resistant rice cultivars in two irrigated lowland environments. Plant Dis., 75:462-466.
[29] Elawad, S.H. and V.E. Green, 1979. Silicon and the rice plant environment: A review of recent research. Il Riso, 28:235-253.
[30] Epstein, E., 1991. The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci., USA, 91:11-17.
[31] Savant, N.K., G.H. Snyder and L.E. Datnoff, 1997. Silicon management and sustainable rice production. Advance Agronomy, 58:151-199.
[32] Winslow, M.D., 1992. Silicon, disease resistance, and yield of rice genotypes under upland cultural conditions. Crop Science, 32:120 8- 1213.
[33] Yoshida, S., 1975. The physiology of silicon in rice. Technical Bulletin No. 25. Food Fertilization Technology Center, Taipei, Taiwan.
[34] Elliot, C.L., and G.H. Snyder, 1991. Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. J. Agric. Food Chem., 39:1118-1119.
[35] Melo, S.P. G.H. Korndorfer, C.M. Korndorfer, R. M.Q. Lana, D.G. Santana, 2003. Silicon accumulation and water deficit tolerance in Brachiaria grasses. Scientia Agricola, 60(4):755-759.
[36] Clark, R.B., C.I. Flores, L.M. Gourley, R.R. Duncan, 1990. Mineral element concentration and grain field of sorghum (Sorghum bicolor) and pearl millet (Penniserum glaucom) grow on acid soil. In: VAN BEUSICHEM, M.L. (Ed.) Plant nutrition-physiology and applications. Academic, 391-396.
[37] Okuda, A., and E. Takahashi, 1962. Studies on the physiological role of silicon in crop plant: VIII. Some examination on the specific behavior of low land rice in silicon uptake. J. Soil Sci Manure Jpn., 33: 217-221.
[38] Takahashi, E., J.F. Ma, Y. Miyake, 1990. The possibility of silicon as an essential element for higher plants. Comments on Agricultural and Food Chemistry, 2: 99-122.
[39] Jones, L.H.P., and K.A Handreck, 1967. Silica in soils, plants, and animals. Adv. Agron., 19:107-49.
[40] Agarie, S., Uchida, H.; Agata, W., Kubota, F. and P.B. Kaufman, 1998. Effects of silicon on transpiration and leaf conductance in rice plants (Oryza sativa L.). Plant Production Science, 1:89-95.
[41] Ma, J.F., Y. Miyake and E. Takahashi, 2001. Silicon as a beneficial element for crop plants. In: DATNOFF, L.E.; SNYDER, G.H.; KORNDÖRFER, G.H. Silicon in agriculture. Studies in plant science, Amsterdam: Elsevier, 8(2)17-39.
[42] Korndorfer, G.H., G.H. Synder, M. Ulloa, G. Powell, and L.E. Datnoff, 2001. Calibration of soil and plant silicon analysis for rice production. J. Plant Nutr., 24:1071-1084.
[43] Malavolta, E. and D. Fornasieri Filho, 1983. Nutrição mineral da cultura do arroz. In: FERREIRA, M.E.; YAMADA, T.; MALAVOLTA, E. Cultura do arroz de sequeiro fatores afetando a produtividade. Piracicaba: Instituto da Potassa & Fosfata, 95-143.
[44] Barbosa Filho, M.P., 1991. Adubação do arroz de sequeiro. Informe Agropecuário, 14:32-38.
[45] Arf, O., 1993. Efeito de densidade populacional e adubação nitrogenada sobre o comportamento de cultivares de arroz irrigado por aspersão. Ilha Solteira: UNESP, 63. (Livre Docência).
[46] Carvalho, J.C., 2000. Análise de crescimento e produção de grãos da cultura do arroz irrigado por aspersão em função da aplicação de escórias de siderurgia como fonte de silício. Botucatu: UNESP/FCA, 119. (Dissertação - Mestrado).
[47] Barbosa Filho, M.P., 1987. Nutrição e adubação do arroz. Piracicaba: Associação Brasileira para Pesquisa da Potassa e do Fosfato, 127.
[48] Exley, C., 1998. Silicon in life: a bioinorganic solution to bioorganic essentiality. Journal of Inorganic Biochemistry, 69:139-144.
[49] Malavolta, E., G.S. Vitti and S.A. Oliveira, 1997 Avalia├º├úo do estado nutricional das plantas: princ├¡pios e aplica├º├Áes. 2.ed. Piracicaba: POTAFOS,. 319.
[50] Machado, J.R., 1994. Desenvolvimento da planta e produtividade de gr├úos de popula├º├Áes de arroz (Oryza sativa l.) irrigado por inunda├º├úo em fun├º├úo de épocas de cultivo. Botucatu: UNESP/FCA, 237 (Tese- Livre Doc├¬ncia).
[51] Stone, L.F., P.M Silveira, J.A.A. Moreira, L.P. Yokoyama, 1999. Adubação nitrogênada em arroz de sob irrigação suplementar por aspersão. Pesquisa Agropecuária Brasileira, 34:929-932.
[52] Fallah, A., R. M. Visperas and A.A. Alejar, 2004. The interactive effect of silicon and nitrogen on growth and spikelet filling in rice (Oryza sativa L.) Philipp. Agric. Scientist, 87: 174-176.