**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30458

##### Modeling Non-Darcy Natural Convection Flow of a Micropolar Dusty Fluid with Convective Boundary Condition

**Authors:**
A. Mahdy,
F. M. Hady,
R. A. Mohamed,
Omima A. Abo Zaid

**Abstract:**

**Keywords:**
MHD,
Porous Media,
natural
convection,
Micropolar dusty fluid,
convective heating

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.3669258

**References:**

[1] A. C. Eringen, “Theory of thermomicropolar fluids”, J. Math. Appl. voI. 38, PP. 480-495, 1972.

[2] A. C. Eringen, “Theory of micropolar fluids”, J. Math. Mech. voI. 16, pp. 1-18, 1966.

[3] T. Ariman, M. A. Turk, N. D. Sylvester, “Microcontinuum fluid mechanicsa review”, Int. J. Eng. Sci. voI. 11, PP. 905-929, 1973.

[4] T. Ariman, M. A. Turk, N. D. Sylvester, “Applications of microcontinuum fluid mechanics”, Int. J. Eng. Sci. voI. 12, PP. 273-293, 1974.

[5] H. P. Rani, C. N. Kim, “A transient natural convection of micropolar fluids over a vertical cylinder”, Heat Mass Transfer voI. 46, PP. 1277-1285, 2010.

[6] C. Y. Cheng, “Natural convection of a micropolar fluid from a vertical truncated cone with power-law variation in surface temperature”, Int. Commun. Heat Mass Transfer voI. 35, PP. 39-46, 2008.

[7] R. A. Damseh, T. A. Al-Azab, B. A. Shannak, M. Al Husein, “Unsteady natural convection heat transfer of micropolar fluid over a vertical surface with constant heat flux”, Turk. J. Eng. Environ. Sci. voI. 31, PP. 225-233, 2007.

[8] I .A. Hassanien, A. H. Essawy, N .M. Moursy, Natural convection flow of micropolar fluid from a permeable uniform heat flux surface in porous medium, Appl. Math. Comput. voI. 152, PP. 323-335, 2004.

[9] M. Ferdows, D. Liu, “Natural convective flow of a magneto-micropolar fluid along a vertical plate”, Propul. Power. Rese. voI. 7, PP. 43-51, 2018.

[10] N. V. K. Rao, C. Srinivasulu, C. S. K. Raju, B. Devika, “Thermal natural convection of magneto hydrodynamics micropolar unsteady fluid over a radiated stretching sheet with viscous dissipation”, J. Nanofluids voI. 8, PP. 550-555, 2019.

[11] L. Rundora, O. D. Makinde, “Unsteady MHD flow of non-Newtonian fluid in a channel filled with a saturated porous medium with asymmetric navier slip and convective heating”, Appl. Math. Inform. Sci. Int. J. voI. 12, PP. 483-493, 2018.

[12] A. Mahdy, “Unsteady MHD slip flow of a non-Newtonian Casson fluid due to stretching sheet with suction or blowing effect”, J. Appl. Fluid Mech. voI. 9, PP. 785- 793, 2016.

[13] A. Mahdy, S. A. Ahmed, “Unsteady MHD convective flow of non-Newtonian Casson fluid in the stagnation region of an impulsively rotating sphere”, J. Aero. Eng. voI. 30, PP. 04017036 (8 pages), 2017.

[14] F. M. Hady, A. Mahdy, R. A. Mohamed, Omima A. Abo Zaid, “Effects of viscous dissipation on unsteady MHD thermo bioconvection boundary layer flow of a nanofluid containing gyrotactic microorganisms along a stretching sheet”, World J. Mech. voI. 6, PP. 505-526, 2016.

[15] S. A. Ahmed, A. Mahdy, “Unsteady MHD double diffusive convection in the stagnation region of an impulsively rotating sphere in the presence of thermal radiation effect”, J. Taiwan Institu. Chemical Eng. voI. 58, PP. 173-180, 2016.

[16] S. R. Sheri, “Heat and mass transfer on the MHD flow of micro polar fluid in the presence of viscous dissipation and chemical reaction”, Procedia Eng. voI. 127, PP. 885-892, 2015.

[17] S. A. Shehzad, T. Hayat, A. Alsaedi, “MHD flow of Jeffrey nanofluid with convective boundary conditions”, J. Braz. Soc. Mech. Sci. Eng. voI. 37, PP. 873-883, 2015.

[18] S. L. Lee, J. H. Yang, “Modeling of Darcy-Forchheimer drag for fluid flow across a bank of circular cylinders”, Int. J. Heat Mass Transfer voI. 40, PP. 3149-3155, 1997.

[19] V. Prasad, N. Kladias, “Non-Darcy natural convection in saturated porous media, In: S Kaka, B Kilkis, FA Kulacki and F Arin (eds)”, Convective Heat Mass Transfer Porous Media. voI. 196, PP. 173-224, 1991.

[20] A. L. Dye, J. E.McClure, C. T. Miller, W. G. Gray, “Description of non-Darcy flows in porous medium systems”, Phys. Rev. E voI. 87, PP. 033012 (14 pages), 2013.

[21] J. S. R. Prasad, K. Hemalatha, “A study on mixed convective, MHD flow from a vertical plate embedded in non-Newtonian fluid saturated non- Darcy porous medium with melting effect”, J. Appl. Fluid Mech. voI. 9, PP. 293-302, 2016.

[22] P. Nithiarasu, K. N. Seetharamu, T. Sundararajan, “Non-Darcy double-diffusive natural convection in axisymmetric fluid saturated porous cavities”, Heat Mass Transfer voI. 32, PP. 427-433, 1997.

[23] A. Y. Bakier, “Natural convection heat and mass transfer in a micropolar fluid- saturated non-Darcy porous regime with radiation and thermophoresis effects”, Therm. Sci. voI. 15, PP. S317-S326, 2011.

[24] F. M. Hady, R. A. Mohamed, A. Mahdy, “Non-Darcy natural convection flow along a vertical wavy plate embedded in a non-Newtonian fluid saturated porous medium”, Int. J. Appl. Mech. Eng. voI. 13, PP. 91-100, 2008.

[25] F. M. Hady, R. A. Mohamed, A. Mahdy, Omima A. Abo-Zaid, “Non-Darcy natural convection boundary layer flow over a vertical cone in porous media saturated with a nanofluid containing gyrotactic microorganisms with a convective boundary condition”, J. Nanofluids voI. 5, PP. 765-773, 2016.

[26] R. A. Mohamed, A. Mahdy, S. Abo-Dahab, “Effects of thermophoresis, heat source/sink, variable viscosity and chemical reaction on non-Darcian mixed convective heat and mass transfer flow over a semi-infinite porous inclined plate in the presence of thermal radiation”, J. Computational Theoretical Nanoscie. voI. 10, PP. 1366-1375, 2013.

[27] S. Siddiqa, N. Begum, Md. A. Hossain, R. S. R. Gorla, “Natural convection flow of a two-phase dusty non-Newtonian fluid along a vertical surface”, Int. J. Heat Mass Transfer voI. 113, PP. 482-489, 2017.

[28] S. Siddiqa, N. Begum, M. A. Hossain, R. S. R. Gorla, “Numerical solutions of natural convection flow of a dusty nanofluid about a vertical wavy truncated cone”, J. Heat Transfer voI. 139, PP. 022503 (11 pages), 2017.

[29] S. Siddiqa, N. Begum, M. A. Hossain, R. S. R. Gorla, “Two-phase natural convection flow of a dusty fluid”, Int. J. Numer. Meth. Heat Fluid Flow voI. 25, PP. 1542-1556, 2015.

[30] D. C. Dalal, N. Datta, S. K. Mukherjea, “Unsteady natural convection of a dusty fluid in an infinite rectangular channel”, Int. J. Heat Mass Transfer voI. 41, PP. 547-562, 1998.

[31] S. M. Silu, M. Wainaina, M. Kimathi, “Effects of magnetic induction on MHD boundary Layer flow of dusty fluid over a stretching sheet”, Global J. Pure Appl. Math. voI. 14, PP. 1197-1215, 2018.

[32] B. J. Gireesha, R. S. R. Gorla, M. R. Krishnamurthy, B. C. Prasannakumara, “Biot number effect on MHD flow and heat transfer of nanofluid with suspended dust particles in the presence of nonlinear thermal radiation and non-uniform heat source/sink”, Acta Et Commentationes Universitatis Tartuensis De Mathematica voI. 22, PP. 91-114, 2018.

[33] B. J. Gireesha, R. S. R. Gorla, M. R. Krishnamurthy, B. C. Prasannakumara, “MHD flow and radiative heat transfer of micropolar dusty fluid suspended with alumina nanoparticles over a stretching sheet embedded in a porous medium”, JNNCE J. Eng. Manag. voI. 2, PP. 30-45, 2018.