Radiation Effects and Defects in InAs, InP Compounds and Their Solid Solutions InPxAs1-x
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Radiation Effects and Defects in InAs, InP Compounds and Their Solid Solutions InPxAs1-x

Authors: N. Kekelidze, B. Kvirkvelia, E. Khutsishvili, T. Qamushadze, D. Kekelidze, R. Kobaidze, Z. Chubinishvili, N. Qobulashvili, G. Kekelidze

Abstract:

On the basis of InAs, InP and their InPxAs1-x solid solutions, the technologies were developed and materials were created where the electron concentration and optical and thermoelectric properties do not change under the irradiation with Ф = 2∙1018 n/cm2 fluences of fast neutrons high-energy electrons (50 MeV, Ф = 6·1017 e/cm2) and 3 MeV electrons with fluence Ф = 3∙1018 e/cm2. The problem of obtaining such material has been solved, in which under hard irradiation the mobility of the electrons does not decrease, but increases. This material is characterized by high thermal stability up to T = 700 °C. The complex process of defects formation has been analyzed and shown that, despite of hard irradiation, the essential properties of investigated materials are mainly determined by point type defects.

Keywords: InAs, InP, solid solutions, irradiation.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.3607840

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 967

References:


[1] X. Jiang, Q. Xiong, S. Nam, F. Qian, Y. Li, and Ch. M. Lieber, “InAs/InP radial nanowire heterostructures as high electron mobility devices”, Nano Lett., 7 (10), pp 3214–3218. 2007.
[2] L. Romeo, S. Roddaro, A. Pitani, D. Ercolani, L. Sorba, and F. Beltran, “Electrostatics spin control in InAs/InP nanowire quantum dots”, Nano Lett., 12 (9), pp 4490–4494
[3], 2012.
[3] D. W. Stokes, J. H. Li, R. L. Forrest, S. L. Ammu, J. C. Lenzi, S. C. Moss, B. Z. Nosho, E. H. Aifer, B. R. Bennett, and L. J. Whitman, “Optical and structural properties of InAs/GaSb nanostructures”, Mater. Res. Soc. Symp. Proc., vol.794, T9.9, 2003.
[4] T. C. Newell, D. J. Bossert, A. Stintz, B. Fuch, K.J. Malloy, L.F. Lester. “Gain and linewidth enhance ment factor in InAs quantum-dot laser diodes”. IEEE. Phot. Technol. Lett., vol.11, issue 12, p.1527,1999.
[5] Y. Kuwahara, H. Oyanagi, Y. Takeda, H. Yamaguchi, and M. Aono, “Bond length relaxation in ultrathin GaxIn1–xP and InPxAs1–x layers on InP(100)”, Appl.Sur.Sci., vol.60/61, p.529, 1992.
[6] K. Zdansky, L. Pekarek, and P. Kacerovsky, “Evaluation of semi-insulating Ti-doped and Mn-doped InP for radiation detection”, Semicond. Sci. Technol., vol.16, p.1002, 2001.
[7] N. Kekelidze, G. Kekelidze, Patent No.89035, USSR, Moscow, 1975.
[8] N. Kekelidze, T. Jakhutashvili. “Solar energy resources and their application perspective in Georgia”. International Solar Energy Society. Proceedings of Solar World Congress-1999, Jerusalem, 1999.
[9] N. Kekelidze, G. Kekelidze, D. Kekelidze, V. Aliyev. International Conference on the Physics of Semiconductors (ICPS 2012). Zurich. AIP Conference Proceedings. v. 1566(1); p. 101-102. 2013
[10] N. Kekelidze, B. Kvirkvelia, D. Kekelidze, E. Khutsishvili, G. Kekelidze. Phenomenon of Mutual Compensation of Radiation Donors and Acceptors and Creation of Radiation-Resistant Materials. J. of Electrical Engineering (JEE), 2, #4, 187-192 (2014).
[11] Elza Khutsishvili, Bella Kvirkvelia, David Kekelidze, Vugar Aliyev, David Khomasuridze, Nodar Kekelidze. International Conference on the Physics of Semiconductors (ICPS-2012), Zurich. AIP Conference Proceedings 103-104. 2013.
[12] N. Kekelidze, J. Khubua, G. Kekelidze, D. Kekelidze, V. Aliyev, B. Kvirkvelia, E. Khutsishvili. Proceedings of the 7th International Conference "Physics in the LHC era" 2013, pp. 59-70. 2013.
[13] N. Kekelidze, E. Khutsishvili, B. Kvirkvelia, G. Urushadze, G. Kekelidze. Abstract of 32nd International Conference on the Physics of Semiconductors (ICPS 2014) Austin, USA.
[14] N. Kekelidze, E. Khutsishvili, B. Kvirkvelia, D. Kekelidze, V. Aliyev, G. Kekelidze. Transport Properties of InAs-InP Solid Solutions. J. of Electrical Engineering (JEE). 2, #5, pp. 207-212. 2014
[15] N. Kekelidze, E. Khutsishvili, Z. Kvinikadze, Z. Davitaya, D. Kekelidze, B. Kvirkvelia, K. Sadradze, L. Nadiradze, G. Kekelidze. American Journal of Nano Research and applications. 5(3-1). p.48-55. 2017.
[16] V. N. Brudnyi, S. N. Grinyaev, N. G. Kolin. Electrophysical and optical properties in electron (∼2MeV) irradiated InAs: energetic structure of the intrinsic point defects. Fizika i tekhnika poluprovodnikov (Physics and Techniques of semiconductors), 2005, v. 39, # 4, pp. 409-418.
[17] I. Bolshakova, I. Vasilevskii, L. Viererbl, I. Duran, N. Kovalyova, K. Kovarik et al., Prospects of using In-containing semiconductor materials in magnetic field sensors for thermonuclear reactor magnetic diagnostics, IEEE Transactions on Magnetics 49(2013) 50-53.
[18] L. W. Aukerman, “Electron irradiation of indium arsenide”, Phys.Rev., vol.115,p. 1133,1959