WASET
	%0 Journal Article
	%A Arvind Srivastav and  Tarun Kanti Bhattacharyya
	%D 2018
	%J International Journal of Geological and Environmental Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 138, 2018
	%T A Low-Power Two-Stage Seismic Sensor Scheme for Earthquake Early Warning System
	%U https://publications.waset.org/pdf/10009053
	%V 138
	%X The north-eastern, Himalayan, and Eastern Ghats Belt
of India comprise of earthquake-prone, remote, and hilly terrains.
Earthquakes have caused enormous damages in these regions in the
past. A wireless sensor network based earthquake early warning
system (EEWS) is being developed to mitigate the damages caused
by earthquakes. It consists of sensor nodes, distributed over the
region, that perform majority voting of the output of the seismic
sensors in the vicinity, and relay a message to a base station to alert
the residents when an earthquake is detected. At the heart of the
EEWS is a low-power two-stage seismic sensor that continuously
tracks seismic events from incoming three-axis accelerometer signal
at the first-stage, and, in the presence of a seismic event, triggers
the second-stage P-wave detector that detects the onset of P-wave
in an earthquake event. The parameters of the P-wave detector have
been optimized for minimizing detection time and maximizing the
accuracy of detection.Working of the sensor scheme has been verified
with seven earthquakes data retrieved from IRIS. In all test cases, the
scheme detected the onset of P-wave accurately. Also, it has been
established that the P-wave onset detection time reduces linearly with
the sampling rate. It has been verified with test data; the detection
time for data sampled at 10Hz was around 2 seconds which reduced
to 0.3 second for the data sampled at 100Hz.
	%P 403 - 408