WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/10007633,
	  title     = {Dynamic Response Analyses for Human-Induced Lateral Vibration on Congested Pedestrian Bridges},
	  author    = {M. Yoneda},
	  country	= {},
	  institution	= {},
	  abstract     = {In this paper, a lateral walking design force per person is proposed and compared with Imperial College test results. Numerical simulations considering the proposed walking design force which is incorporated into the neural-oscillator model are carried out placing much emphasis on the synchronization (the lock-in phenomenon) for a pedestrian bridge model with the span length of 50 m. Numerical analyses are also conducted for an existing pedestrian suspension bridge. As compared with full scale measurements for this suspension bridge, it is confirmed that the analytical method based on the neural-oscillator model might be one of the useful ways to explain the synchronization (the lock-in phenomenon) of pedestrians being on the bridge.
},
	    journal   = {International Journal of Civil and Environmental Engineering},
	  volume    = {11},
	  number    = {8},
	  year      = {2017},
	  pages     = {1043 - 1048},
	  ee        = {https://publications.waset.org/pdf/10007633},
	  url   	= {https://publications.waset.org/vol/128},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 128, 2017},
	}