WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/10007474,
	  title     = {Heat Transfer Dependent Vortex Shedding of Thermo-Viscous Shear-Thinning Fluids},
	  author    = {Markus Rütten and  Olaf Wünsch},
	  country	= {},
	  institution	= {},
	  abstract     = {Non-Newtonian fluid properties can change the flow
behaviour significantly, its prediction is more difficult when thermal
effects come into play. Hence, the focal point of this work is the
wake flow behind a heated circular cylinder in the laminar vortex
shedding regime for thermo-viscous shear thinning fluids. In the case
of isothermal flows of Newtonian fluids the vortex shedding regime
is characterised by a distinct Reynolds number and an associated
Strouhal number. In the case of thermo-viscous shear thinning
fluids the flow regime can significantly change in dependence of
the temperature of the viscous wall of the cylinder. The Reynolds
number alters locally and, consequentially, the Strouhal number
globally. In the present CFD study the temperature dependence of
the Reynolds and Strouhal number is investigated for the flow of a
Carreau fluid around a heated cylinder. The temperature dependence
of the fluid viscosity has been modelled by applying the standard
Williams-Landel-Ferry (WLF) equation. In the present simulation
campaign thermal boundary conditions have been varied over a
wide range in order to derive a relation between dimensionless heat
transfer, Reynolds and Strouhal number. Together with the shear
thinning due to the high shear rates close to the cylinder wall
this leads to a significant decrease of viscosity of three orders of
magnitude in the nearfield of the cylinder and a reduction of two
orders of magnitude in the wake field. Yet the shear thinning effect
is able to change the flow topology: a complex K´arm´an vortex street
occurs, also revealing distinct characteristic frequencies associated
with the dominant and sub-dominant vortices. Heating up the cylinder
wall leads to a delayed flow separation and narrower wake flow,
giving lesser space for the sequence of counter-rotating vortices. This
spatial limitation does not only reduce the amplitude of the oscillating
wake flow it also shifts the dominant frequency to higher frequencies,
furthermore it damps higher harmonics. Eventually the locally heated
wake flow smears out. Eventually, the CFD simulation results of the
systematically varied thermal flow parameter study have been used
to describe a relation for the main characteristic order parameters.},
	    journal   = {International Journal of Mechanical and Mechatronics Engineering},
	  volume    = {11},
	  number    = {6},
	  year      = {2017},
	  pages     = {1236 - 1245},
	  ee        = {https://publications.waset.org/pdf/10007474},
	  url   	= {https://publications.waset.org/vol/126},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 126, 2017},
	}