Natural Preservatives: An Alternative for Chemical Preservative Used in Foods
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32807
Natural Preservatives: An Alternative for Chemical Preservative Used in Foods

Authors: Zerrin Erginkaya, Gözde Konuray

Abstract:

Microbial degradation of foods is defined as a decrease of food safety due to microorganism activity. Organic acids, sulfur dioxide, sulfide, nitrate, nitrite, dimethyl dicarbonate and several preservative gases have been used as chemical preservatives in foods as well as natural preservatives which are indigenous in foods. It is determined that usage of herbal preservatives such as blueberry, dried grape, prune, garlic, mustard, spices inhibited several microorganisms. Moreover, it is determined that animal origin preservatives such as whey, honey, lysosomes of duck egg and chicken egg, chitosan have antimicrobial effect. Other than indigenous antimicrobials in foods, antimicrobial agents produced by microorganisms could be used as natural preservatives. The antimicrobial feature of preservatives depends on the antimicrobial spectrum, chemical and physical features of material, concentration, mode of action, components of food, process conditions, and pH and storage temperature. In this review, studies about antimicrobial components which are indigenous in food (such as herbal and animal origin antimicrobial agents), antimicrobial materials synthesized by microorganisms, and their usage as an antimicrobial agent to preserve foods are discussed.

Keywords: Animal origin preservatives, antimicrobial, chemical preservatives, herbal preservatives.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1130043

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2540

References:


[1] M. E. Erdem, S. Koral, Ş. Kayış, H. Çebi and İ. Keskin, “Trabzon İlinde Avlanan Hamsi Balıklarında (Engraulis encrasicholus) Toplam Mezofil Bakteri Ve Bazı Patojen Mikroorganizmaların Bulaşma Kaynaklarının Araştırılması”, 1. Ulusal Hamsi Çalıştayı: Sürdürülebilir Balıkçılık, 17-18 Haziran 2010.
[2] I. R. Booth, R. G. Kroll, C. V. Salmond, “The Effect of Food Preservatives on pH Homeostasis in Escherichia coIi”, Journal of General Microbiology, 1984, 130: 2845-2850.
[3] L. Gram, L. Ravn, M. Rascha, J. B. Bruhn, A. B. Christensen, M. Givskov, “Food spoilage-interactions between food spoilage bacteria”, International Journal of Food Microbiology, 2002, 78, 79–97.
[4] A. E. Yousef, X. Liu, G. W. Chism, “Inactivation of Escherichia Coli 0157:H7 by the Combination of Organic Acids and Pulsed Electric Field”, Journal of Food Safey 16 (1997) 287-299.
[5] L. Pizzoferrato, G. Di Lullo, E. Quattrucci, “Determination of free, bound and total sulphites in foods by indirect photometry-HPLC”, Food Chemistry, 1998, vol 63, No 2, 275-279.
[6] Ö. Özdestan, and A. Üren, “Nitrate and Nitrite in Foods”, Academic Food Journal, 2010, 8(6):35-43.
[7] G. Arslan, “Gıda Katkı Maddeleri Ve Yeni Yapılan Dioksimlerin Gıda Katkı Maddesi Olarak Kullanılabilirliliğinin Araştırılması” Selçuk Üniversitesi Fen Bilimleri Enstitüsü Kimya Anabilim Dalı Yüksek Lisans Tezi, 2011.
[8] P. M. Davidson, T. M. Taylor, S. E. Schmidt, “Chemical Preservatives and Natural Antimicrobial Compounds”, Food Microbiology: Fundamentals and Frontiers, 2013, 4th Ed. Chapter 30.
[9] G. J. E. Nychas, 1995. “Natural Antimicrobials from Plants”. New Methods of Food Preservation, 1995, 58-89.
[10] M. Kıvanç, E. Dinçer and H. Karaca, “Lactic Acid Bacteria as Biopreservative and Bacteriocins”, GIDA/The Journal of FOOD, 2010, 35(1).
[11] V. C. H. Wu, X. Shen, X. Sun, Q. Xie, H. Liu, Y. Zhao, Y. Pan, and C. A. Hwang, C.A., “Antimicrobial effect of blueberry (Vaccinium corymbosum L.) extracts against the growth of Listeria monocytogenes and Salmonella enteritidis”, Food Control, 2014, 35,159-165.
[12] C. K. Bower, K. F. Schilke, and M. A. Daeschel, “Antimicrobial Properties of Raisins in Beef Jerky Preservation”, Journal of Food Science, 2003, 68(4):1484-1489.
[13] N. Benkeblia, “Antimicrobial activity of essential oil extracts of various onions (Allium cepa) and garlic (Allium sativum)” Lebensm.-Wiss. u.-Technol. 37 (2004) 263–268.
[14] S. Ankri, and D. Mirelman, "Antimicrobial properties of allicin from garlic”, Microbes and Infection, 1999, 2:125−129.
[15] K. I. Sallam, M. Ishioroshi, and K. Samejima, “Antioxidant and antimicrobial effects of garlic in chicken sausage”, Lebensm.-Wiss. u.-Technol., 2004, 37:849–855
[16] M. Lacroix, M. Turgis, J. Han, and S. Caillet, “Antimicrobial activity of mustard essential oil against Escherichia coli O157:H7 and Salmonella typhi”, Food Control, 2009, 20: 1073–1079.
[17] D. H. Kang, M. S. Rhee, S. Y. Lee and R. H. Dougherty, “Antimicrobial Effects of Mustard Flour and Acetic Acid against Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica Serovar Typhimurium”, Applied and Environmental Microbiology, May, 2003, 2959–2963.
[18] İ. Yücel Şengün and E. Yücel, “Antimicrobial properties of wild fruits” Biological Diversity and Conservation, 2013, 8, 1:69-77.
[19] C. Hall, Y. Xu, C. Wolf-Hall, F. Manthey, “Fungistatic activity of flaxseed in potato dextrose agar and a fresh noodle system”, International Journal of Food Microbiology, 2008, 121:262–267.
[20] Z. A. Salama, A. A. Gaafar, M. S. Askar, D. M. El-Hariri and B. A. Bakry, “In Vitro antioxidant and antimicrobial activities of Lignan flax seed extract (Linum usitatissimum, L.)” Int. J. Pharm. Sci. Rev. Res., 2013, 23(2), 291-297.
[21] K. Candoğan, Z. K. Emiroğlu, G. P. Yemiş, B. K. Coşkun, “Antimicrobial activity of soy edible films incorporated with thyme and oregano essential oils on fresh ground beef patties”, Meat Science, 2010, 86:283–288.
[22] A. Govaris, N. Solomakos, P. Koidis, and N. Botsoglou, “The antimicrobial effect of thyme essential oil, nisin, and their combination against Listeria monocytogenes in minced beef during refrigerated storage”, Food Microbiology, 2008, 25:120–127.
[23] L. Fyfe, J. Stewart and A. Smith-Palmer, “Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens” Letters in Applied Microbiology, 1998, 26:118–122.
[24] N. Matan, H. Rimkeeree, A. J., Mawson, P. Chompreeda, V. Haruthaithanasan, M. Parker, “Antimicrobial activity of cinnamon and clove oils under modified atmosphere conditions”, International Journal of Food Microbiology, 2006, 107:180 – 185.
[25] Y. G. Zu, Y. J. Fu, L. Y. Chen, X. G. Shi, Z. Wang, S. Sun and T. Efferth, “Antimicrobial Activity of Clove and Rosemary Essential Oils Alone and in Combination”, Phytother. Res., 2007, 21, 989–994.
[26] M. H. Hosseini, S. H. Razavi and M. A. Mousavi, “Antimicrobial, Physical and Mechanical Properties of Chitosan-Based Films Incorporated with Thyme, Clove and Cinnamon Essential Oils”, Journal of Food Processing and Preservation, 33 (2009) 727–743.
[27] J. M. T. Hamilton-Miller, “Antimicrobial Properties of Tea” Antimicrobial Agents and Chemotherapy, 1995, 2375–2377.
[28] P. W. Taylor, J. M.T. Hamilton-Miller, and P. D. Stapleton, “Antimicrobial properties of green tea catechins” Food Sci Technol Bull., 2005, 2: 71–81.
[29] E. A. Johnson, A. E. Larson, R. R.Y. Yu, O. A. Lee, S. Price and G. J. Haas, “Antimicrobial activity of hop extracts against Listeria monocytogenes in media and in food”, International Journal of Food Microbiology, 1996, 33: 195-207.
[30] G. J. Haas and R. Barsoumian, “Antimicrobial Activity of Hop Resins”, Journal of Food Protection, 1994, Vol. 57, No.1, Pages 59-61.
[31] M. Pischetsrieder, U. Mueller, T. Sauer, I., Weigel, R., Pichner, “Identification of H2O2 as a major antimicrobial component in coffee”, Food Funct., 2011, 2, 265.
[32] P. S. Murthy and H. K. Manonmani, “Physico-chemical, antioxidant and antimicrobial properties of Indian monsooned coffee” Eur Food Res Technol, 2009, 229:645–650.
[33] E. H. D. S. Brandao, L. D. D. Oliveira, L. F. Landucci, C. Y. Koga-Ito, A. O. C. Jorge, “Antimicrobial activity of coffee-based solutions and their effects on Streptococcus mutans adherence”, Braz J Oral Sci., January-March 2007 - Vol. 6 - Number 20 1274-1277.
[34] J. A. Rufian-Henares and S. P. D. L. Cueva, “Antimicrobial Activity of Coffee Melanoidins – A Study of Their Metal-Chelating Properties” J. Agric. Food Chem. 2009, 57, 432–438.
[35] M. B. A. Gloria, A. A. P. Almeida, A. Farah, D. A. M. Silva and E. A. Nunan, “Antibacterial Activity of Coffee Extracts and Selected Coffee Chemical Compounds against Enterobacteria” J. Agric. Food Chem., 2006, 54, 8738-8743.
[36] E. D. Vecchi and L. Drago, “Propolis' antimicrobial activity: what's new?” Le Infezioni in Medicina: Rivista Periodica di Eziologia, Epidemiologia, Diagnostica, Clinica e Terapia Delle Patologie Infettive, 2007, 15(1):7-15
[37] S. D. Costa, G. P. D. Silva, R. D. Rezende, F. C. Pimenta, L. R.D. Rezende, “Antimicrobial activity of two Brazilian commercial propolis extracts”, Brazilian Journal of Oral Sciences, Vol. 5, No. 16, Jan - March, 2006, pp. 967-970.
[38] D. K. B. Runyoro, O. D. Ngassapa, A. Kamugisha, “Antimicrobial Activity of Propolis from Tabora and Iringa Regions, Tanzania and Synergism with Gentamicin” Journal of Applied Pharmaceutical Science, January, 2017, Vol. 7 (01), pp. 171-176.
[39] L. Drago, B. Mombelli, E. D. Vecchi, M. C. Fassina, L. Tocalli and M. R. Gismondo, “In Vitro Antimicrobial Activity of Propolis Dry Extract” Journal of Chemotherapy, 2000, Vol. 12 - n. 5:390-395.
[40] S. K. Verma, S. K. Sood, R. K. Saini, N. Saini, “Pediocin PA-1 containing fermented cheese whey reduces total viable count of raw buffalo (Bubalis bubalus) milk”, LWT - Food Science and Technology, 2017.
[41] Lopez-Malo, E. Palou, E. Mani-Lopez, S. D. C. Beristain-Bauza, “Antimicrobial activity of whey protein films supplemented with Lactobacillus sakei cell-free supernatant on fresh beef”, Food Microbiology, 2017, 62:207–211.
[42] F. Coşkun, “Gıdalarda Bulunan Doğal Koruyucular” Gıda Teknolojileri Elektronik Dergisi, 2006 (2) 27-33.
[43] N. Özmen and E. Alkın, “The Antimicrobial Features of Honey and The Effects on Human Health”, Uludag Bee Journal November 2006. 155-160.
[44] Z. Aksoy and M. Dığrak, “In vitro Atimicrobial Effect of Honey and Propolis Collected in Bingöl Region” Science and Eng. J of Fırat Univ., 2006, 18 (4), 471-478.
[45] V. L. Hughey and E. A. Johnson, “Antimicrobial activity of lysozyme against bacteria involved in food spoilage and food-borne disease” Appl. Environ. Microbiol, 1987, vol. 53 no. 9, 2165-2170.
[46] K. Bostan, T. Aldemir and A. Aydın, “Chitosan and its antimicrobial activity” Türk Mikrobiyol Cem Derg, 2007, 37 (2) : 118-127.
[47] Ş. Kurt and Ö. Zorba, “Model Sistemde Farklı Tür Etlere Yağsız Süttozu ve Peyniraltı Suyu Tozu İlavesinin Süspansiyon ve Emülsiyon pH’sı ve Protein Konsantrasyonu Üzerine Etkisi”, Gıda /The Journal Of Food, 2005, 30,2:131-138.
[48] M. Akçelik, N. Akkoç and P. Şanlıbaba, Bacteriocins: Alternative Food Preservatives Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2009 25 (1-2) 59 – 70
[49] F. Blecha and Y. Sang, “Antimicrobial peptides and bacteriocins: alternatives to traditional antibiotics” Animal Health Research Reviews, 2008, 9(2); 227–235
[50] V. Ahmad, M. S. Khan, Q. M. S. Jamal, M. A. Alzohairy, M. A. A. Karaawi and M. U. Siddiqui, “Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation”, International Journal of Antimicrobial Agents, 2017, 49:1–11.
[51] B. Ray, A. K. Bhunia, and M. C. Johnson, “Purification, characterization and antimicrobial spectrum of a bacteriocin produced by Pediococcus acidilactici” Journal of Applied Bacteriology, 1988, Volume 65, Issue 4, pages 261–268.
[52] L. M. Cintas, P. Casaus, L. S. Havarstein, P. E. Hernandez and I. F. Nes,” Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum” Appl. Environ. Microbiol., 1997 vol. 63 no. 11 4321-4330.
[53] J. Zhou, Y. Hu, X. Liu, C. Shan, X. Xia, Y. Wang and M. Dong, “Novel bacteriocin produced by Lactobacillus alimentarius FM-MM4 from a traditional Chinese fermented meat Nanx Wudl: Purification, identification and antimicrobial characteristics”, Food Control, 2017, 77 :290-297.
[54] C. M. A. P. Franz, M. Huch, H. Abriouel, W. Holzapfel ans A. Galvez, “Enterococci as probiotics and their implications in food safety” International Journal of Food Microbiology, 2011, 151, 2(2):125–140.
[55] C. M. A. P. Franz, M. E. Stiles, K. H. Schleifer and W. H. Holzapfel, “Enterococci in foods—a conundrum for food safety”, International Journal of Food Microbiology, 2003, 88,2-3:105-122.
[56] O. M. David, M. O. Alese, D. M. Komolafe, I. J. Adejare, O. O. Alese and A. E. Omonisi, “In vitro and in vivo Antimicrobial Activity of Partially Purified Enterocin Produced by Enterococcus faecalis and Its Applicatıon in Wound Healing”, Afr. J. Cln. Exper. Microbiol., 2017, 18 (1): 1- 10.
[57] A. H. Çon and H. Y. Gökalp, “Laktik Asit Bakterilerinin Antimikrobiyal Metabolitleri ve Etki Şekilleri”, Türk Mikrobiyol Cem Derg, 2000, 30: 180-190.
[58] M. Evren, C. Albayram, M. Apan, “Laktik Asit Bakterilerinin Oluşturduğu Antimikrobiyel Maddeler” Türkiye 9. Gıda Kongresi; 24-26 Mayıs 2006, Bolu
[59] G. Gülgör and F. Özçelik, “Bakteriyosin Üreten Laktik Asit Bakterilerinin Probiyotik Amaçlı Kullanımı” Akademik Gıda, 2014, 12(1):63-68.
[60] M. Oskay and A. U. Tamer, “Streptomyces Kökenli Antibiyotiklerin Dünü, Bugünü Ve Yarını”, e-Journal of New World Sciences Academy, 2009, 4:2, 48-60.
[61] D. Raoult, G. Dubourg, C. Abat, “Why new antibiotics are not obviously useful now”, International Journal of Antimicrobial Agents, 2017.